
RisingBALLERA Player is a Token, a Match is a
Sentence–A Path Towards a Foundational Model
for Football Players Data Analytics
Akedjou Achraff ADJILEYE

Abstract

In this paper, I introduce RisingBALLER, the first public transformer-based model trained
on football match data to learn match-specific player representations. Inspired by
advancements in language modeling, RisingBALLER treats each football match as a
unique sequence where players act as tokens, with their embeddings conditioned by the
specific context of the match. By leveraging masked player prediction MPP as a
pre-training task, RisingBALLER learns foundational representations for football players,
akin to how language models learn representations for text and vision models for images.
I propose next match statistics prediction NMSP as a downstream task to demonstrate
the utility of the learned player embeddings. The NMSP model outperforms a strong
baseline commonly used in the community for performance forecasting. Additionally, I
conduct a comprehensive analysis to explore how the embeddings learned by
RisingBALLER can be applied to various football analytics tasks, including conditional
optimal squad generation, player similarity queries, player and team style clustering,
player-team fit estimation, and more. RisingBALLER is not just a machine learning model;
itʼs a framework designed to revolutionize football analytics by learning high-level
foundational player representations while accounting for the context of each game—a
paradigm that has already transformed fields such as natural language processing and
computer vision.

1

1. Introduction

In recent years, the field of machine learning has been revolutionized by the
introduction of the transformer architecture 1, which initially gained prominence in
natural language processing NLP with models like BERT 2, RoBERTa 3, and more
recently, the widespread use of large language models LLMs. These models, often
trained on seemingly simple tasks such as next token prediction or masked token
prediction, have demonstrated remarkable performance in learning high-level features
that effectively represent each word and model language intricately. They are capable of
learning nuanced representations of the multiple meanings a word can have depending
on its context. This led to the era of language foundation models—models trained on
large text corpora that provide foundational representations of words, which are then
used for various general and domain-specific tasks such as text classification, document
retrieval, hate speech filtering or zero-shot question answering through conversational
agents. The concept of foundation models has also emerged in computer vision, with
models like CLIP 4 and DiNO 5 trained on large datasets of images and text to learn
high-level image representations, central for multiple vision tasks such as object
detection and tracking, image captioning and video understanding.

Meanwhile, the football analytics community still heavily relies on handcrafted
representations for players, which require extensive feature engineering which is often
time-consuming, difficult to reproduce, and challenging to scale, making it impractical for
long-term and large-scale usage. For instance, 7 constructed a distance metric using a
dataset of 3,003 players from the 20142015 season across the top 8 European leagues
by manually crafting 109 performance variables. This distance metric was then used to
identify similar players and cluster players with comparable profiles. Although this
approach yielded good results, the learned features are specific to that particular season
and cannot be applied to data spanning multiple seasons. Similarly, 8 proposes Transfer
Portal, a framework for predicting a player's performance after a potential transfer from
one club to another. Although the primary goal is not to retrieve similar players, the
method involves representing players by aggregating their per 90-minute stats over a
fixed number of matches per season, making them impossible to use for general
player-level tasks. Other works 9, 10 in the literature also rely on handcrafted features
based on player statistics over a certain number of matches for various football data
analytics tasks.

The success of the foundation models in NLP and computer vision raises intriguing
questions:

● Can the concept be applied to other fundamental domains, such as football
analytics, to learn high-level foundational representations for football players?

● and teams?
● If so, how?

2

Football, much like text or visual scenes, is a language of actions spoken by players
throughout a match and expressed through performance data and metrics 6. Each
player uniquely contributes to the narrative and outcome of the match. Thus, it becomes
clear that the same principles that underlie text or vision foundation models can be
applied to the "language" of football to create high-level player representations that can
be used later in various football analytics tasks.

This paper explores this idea by proposing a novel method that leverages the
transformer architecture to model the "football language" spoken by players at each
match. In this approach, each player serves as a token—the fundamental unit for training
a transformer network. Their representations are randomly initialized and then
dynamically adjusted by the transformer model as it is trained on match data. Specifically,
by assigning unique IDs to players within a set of football matches, I construct a
vocabulary of encodable tokens. These tokens are enriched with player statistics from the
match to serve as temporal positional encodings TPE, along with spatial representations
of player positions and team representations. Drawing further inspiration from text
language modeling, the model I present is trained on multiple football matches, with each
match represented as a sequence of players. I propose masked player prediction MPP
as an effective pre-training task for this model to learn robust player features.

The model, named RisingBALLER—a term used to describe a promising young
player in football—aims to be a pioneering effort toward the adoption of the foundation
model paradigm in football analytics research. RisingBALLER aspires to bring the same
level of utility and scalability achieved by NLP and computer vision foundation models to
football data analytics. The key contributions of the paper are as follows:

● I introduce RisingBALLER, a transformer-based model that treats football matches
as sequences of players, trained using masked player prediction MPP to learn
effective player feature representations.

● I propose Next Match Statistics Prediction NMSP as a downstream task for
RisingBALLER. The results show that the fine-tuned model outperforms a strong
and common baseline in the community, which forecasts next match statistics as
the average of the previous five matches' statistics.

● I conducted a comprehensive architecture search for MPP pre-training,
considering the limited data available, and demonstrated its crucial role in
achieving strong performance in NMSP.

● Additionally, I performed an in-depth analysis of the player and position
embeddings learned by RisingBALLER, showcasing their applications, particularly
in understanding players' tactical roles, data-driven team building, and recruitment
strategies.

3

To the best of my knowledge, this is the first public work leveraging the foundation model
paradigm to learn high-level features for representing football players. The code will be
released to encourage further research and development in this field.

The remainder of this paper is structured as follows: Section 2 introduces the dataset and
model architecture; Section 3 outlines the MPP and NMSP training processes and results;
Section 4 explores the potential of the embeddings learned by the model; Section 5
provides technical details on the training process and computational resources used; and
Section 6 concludes the paper and outlines future research directions. Additional ablation
studies and results from the embeddings analysis are provided in the Appendix.

2. Methodology

2.1 Dataset

I used event data provided for free by StatsBomb for all matches in the 20152016
season across the top 5 European leagues: the English Premier League, La Liga,
Bundesliga, Serie A, and Ligue 1. For each match, there is a dataframe containing
between 3,500 and 4,000 rows, each representing an action that occurred during the
match from start to finish, with each action described by numerous features, including the
player involved.

I convert each match event dataframe into a player statistics dataframe, where
each row represents a player in the squad of the two teams that played the match. This
dataframe includes identification features such as the player's team, position, league, a
mask indicating whether the player actually participated in the match (either as part of the
starting 11 or as a substitute), and various player statistics from the match, including
passing stats, offensive stats, defensive stats, and goalkeeper stats. If a player did not
participate in the match, all their statistics are set to 0.

I collected 39 statistics from the StatsBomb data to represent each player. These
include:

● 10 statistics related to passing: pass_total, pass_cross, pass_cut_back,
pass_shot_assist, pass_goal_assist, pass_no_touch, pass_interception,
pass_incomplete, pass_offside, pass_through_ball.

● 9 statistics related to shots: shot_total, shot_statsbomb_xg, shot_corner,
shot_free_kick, shot_open_play, shot_penalty, shot_saved, shot_off_target,
shot_blocked, shot_goal.

● 3 statistics related to interceptions: interception_total, interception_won,
interception_lost.

4

● 3 statistics related to dribbles: dribble_total, dribble_complete,
dribble_incomplete.

● 5 statistics related to fouls: foul_won_total, foul_won_penalty,
foul_committed_total, foul_committed_penalty, foul_committed_yellow_card,
foul_committed_red_card.

● 3 statistics related to goalkeeping: goalkeeper_goal_conceded, goalkeeper_save,
goalkeeper_shot_faced.

● additionally: block_total, clearance_total, ball_recovery_total and
counterpress_total.

For the next match statistics prediction task, matches are sorted by their kickoff
date. Each of these statistics is then aggregated into sums, means, and standard
deviations to model the quantity of matches played, the mean, and the variance of
performance—both from the beginning of the season up to the match being predicted
and over the last 5 matches prior. This process generates 234 statistical variables to
model each player for each match in the dataset.

In total, I generated data for 1,792 matches, representing 2,600 unique players (the
player vocabulary) from 98 unique teams. For the masked player prediction MPP task, I
added an ID to represent the masking token and an ID for the padding token, allowing all
inputs to have the same dimensions (a fixed number of players per match) for batch
computation. To compute team-level stats for the next match statistics prediction NMSP,
I summed all the statistics for all the players in the teamʼs squad.

2.2. The model architecture

RisingBALLER is a transformer-based model specifically designed to represent
football players using match event data. The core idea behind the architecture is to treat
each player participating in a match as a token, leveraging the contextual nature of
football matches by encoding match-related features into dense representations that can
be utilized for various downstream tasks.

The input to the RisingBALLER model consists of sequences corresponding to the
players from both teams participating in a match, as illustrated in Figure 1. For each player,
the following components are included:

● Unique Player ID Embedding PE Each player is assigned a unique ID, which is
embedded into a D-dimensional space using a Multi-Layer Perceptron MLP on a
one-hot encoding vector representing the player's ID within the player vocabulary.
This embedding serves as the primary representation of the player within the
model.

5

● Spatial Positional Embedding SPE The player's position on the field is critical for
understanding their role and contribution to the game. The playerʼs position is
encoded into a D-dimensional vector, also using an MLP on a one-hot encoding
vector of the position type. This encoding captures the spatial context of the player
within the match.

● Temporal Positional Encoding TPE The match event statistics of each player,
which vary from match to match, are embedded into the same D-dimensional
space. This encoding provides a temporal representation of the player's form and
performance during the match. The raw event data is projected into the embedding
space through an MLP.

● Team Affiliation Embedding TE To distinguish between players from different
teams, a team ID embedding is introduced. Like the player and position IDs, each
team ID is embedded into a D-dimensional space using an MLP. This embedding
provides context regarding the playerʼs team affiliation.

These four components—Player ID PE, Spatial Position SPE, Team Affiliation
TE, and Temporal Positional Encoding TPEare combined through element-wise
addition to produce the initial player representation in a unified D-dimensional space. The
initialized player representations tensor for both teams Xinit , of shape N_players, D, is
then fed into a transformer-based attention network. The transformer architecture
employed follows the standard structure introduced in 1. The output tensor Xout with the
same shape as Xinit contains match-contextualized representations for the players and is
used for the downstream task of interest.

For the Masked Player Prediction MPP task, Xout is projected through an MLP into
a V-dimensional space, and a softmax activation function is applied to compute the
probability of the masked player being one of the players in the vocabulary.

For the Next Match Statistics Prediction NMSP task, all player representations are
flattened, and the resulting one-dimensional tensor of shape N_players*D is projected
through an MLP into a 2N_stats dimensional space to predict the N statistics of interest
for each of the two teams.

6

Figure 1 Architecture of RisingBALLER—each player in the match dataset is treated as a token,
with a unique ID embedded into a D-dimensional feature vector PE. This ID is combined with
additional embeddings representing the player's spatial position on the field SPE and team

affiliation TE. The player's match event data is also projected into the same D-dimensional space,
serving as temporal positional embeddings TPE. These four vectors are then combined to

initialize the player representation before being fed into the attention network.

3. Experiments and Results

3.1 Pre-Training with Masked Players Prediction MPP

Transformer models learn robust player representations through pretext tasks,
which are crucial for achieving strong performance on downstream tasks . Inspired by the
masked token prediction used in language modeling , I initially trained RisingBALLER using
Masked Players Prediction MPP. The goal of MPP is to enable the model to learn some
prior relationships between players. The MPP task is straightforward: for each match,
25% of the input players are randomly masked, and the model is trained to predict these
masked players.

I trained two models with one transformer layer each, using embedding
dimensions of D64 and D128 respectively, across the 1,792 processed matches in the
dataset. To enhance the model's generalization capabilities given the relatively small

7

dataset size, I augmented the data by creating 10 different MPP inputs per match, each
with different players masked. This resulted in approximately 18,000 input samples. The
maximum sequence length per match was set to 80, and padding tokens were added if
needed. I used 80% of the input samples for training and 20% for validation. The total
number of tokens used for training was approximately 1.14 million, with a vocabulary size
of 2,602, including the 2,600 unique players, the masking token, and the padding token.

The two models were trained with a batch size of 256, a learning rate of 0.0001,
and a linear decay scheduler without warmup steps, using the AdamW 11 optimizer. The
64-dimensional model was trained for 280,000 steps 5,000 epochs), while the
128-dimensional model was trained for 56,000 steps 1,000 epochs). Following common
practice in the literature, I used cross-entropy loss for training and evaluated top-1 and
top-3 accuracy during training. The results are presented in Table 1.

3.2 Downstream Task: Next Match Statistics Prediction NMSP

After pre-training, I replaced the MPP head with a multi-layer perceptron MLP
designed to predict 18 team performance statistics (see Table 3 related to passing,
offense, defense, and goalkeeping; these collectively provide a comprehensive
description of team performance. Additionally, since the temporal positional encoding for
NMSP was computed using 234 aggregated statistical variables (as detailed in Section
2.1, I removed the input MLP from the pre-training model and re-initialized its weights to
accommodate the new input dimensions. The rest of the model's weights were initialized
with the pre-trained MPP backbone. No input upsampling was applied, and the total 1,792
matches were used for fine-tuning. The data was split 80% for training and 20% for
validation.

During fine-tuning, all the model weights, including those loaded from the
backbone, were updated. Each model 1 layer 64D and 1 layer 128D were trained with the
same batch size of 256, using the same optimizer and learning rate scheduling strategy
as in MPP, but with a warmup ratio of 0.1 and a weight decay of 0.01. These last two
hyperparameters were used to prevent rapid changes in the pre-trained weights, which
could lead to unstable fine-tuning. I used the average mean squared error MSE across
all statistics as the training loss.

Both models quickly converged after 2,000 training steps 333 epochs). The
training results are presented in Table 2, with more detailed evaluation scores presented
in Table 3.

3.3 Results

8

The results presented in Table 1 indicate that both transformer-based models with
embedding dimensions of 64 and 128 perform effectively on the Masked Players
Prediction MPP task, achieving comparable cross-entropy loss and top-1/top-3
accuracy. Notably, the 128-dimensional model converged faster, requiring fewer training
steps to reach similar performance levels as the 64-dimensional model. The high top-3
accuracy across both models 95% suggests that they are successfully capturing
complex relationships between players, even with a relatively small dataset. These
findings are promising, as they validate the chosen architecture and highlight the
potential of using MPP to learn football player embeddings, compared to manually
crafting features from raw statistics.

Architecture Split steps Cross
entropy loss

Accuracy Accuracy top
3

1l64d train 280K 0.3873 x x

1l64d validation 280K 0.8434 0.7893 0.9537

1l128d train 56K 0.3236 x x

1l128d validation 56K 0.8527 0.7785 0.9515

Table 1 Performance of RisingBALLER on the Masked Players Prediction MPP. The
table presents the cross-entropy loss and top-1/top-3 accuracy scores for two
transformer-based models with different embedding dimensions 64 and 128.

Table 2 showcases the overall performance of the RisingBALLER model on the
Next Match Statistics Prediction NMSP task, benchmarking it against a standard
baseline that predicts a team's next match performance by averaging the results of the
previous five matches. The global metrics, including the mean squared error MSE and
percentage improvement over the baseline, demonstrate that the transformer-based
models with 64 and 128 embedding dimensions significantly outperform the baseline.
Notably, the 128-dimensional model achieves a 37.70% improvement, while the
64-dimensional model shows a 35.35% improvement, underscoring the model's ability to
generalize and capture complex patterns in football match data.

Architecture Split Global Average MSE %improvement
compared to baseline

baseline validation 819.28 x

1l,64d train 446.57 x

1l,64d validation 529.65 35.35%

9

1l,128d train 354.04 x

1l,128d validation 510.33 37.70%

Table 2 Global performance of the RisingBALLER models on the Next Match Statistics
Prediction NMSP, in comparison to a strong baseline method. The table reports the
average mean squared error MSE across all statistics on both the training and validation
splits, along with the percentage improvement over the baseline. The results demonstrate
that the transformer-based model, particularly with 128-dimensional embeddings,
significantly outperforms the baseline, confirming its effectiveness in modeling complex
relationships in football data for statistics prediction.

Table 3 provides a more granular analysis by presenting the root mean squared
error RMSE and dispersion coefficient (delta) for each individual statistic. The dispersion
coefficient is particularly important as it normalizes the RMSE relative to the mean value
of each statistic, making it a scale-independent measure of prediction accuracy. This
allows for a more intuitive comparison across different statistics, regardless of their
natural scale (e.g., the number of passes vs. the number of interceptions).

Also, I calculated the percentage difference based on the dispersion coefficient,
showing how much the model improves or not compared to the baseline. For most
statistics, RisingBALLER shows positive improvements, such as a 4% better accuracy in
predicting pass crosses and total shots with the 128-dimensional model. However, there
are also a few areas, like expected goals (xG) and goals scored, where the model slightly
underperforms compared to the baseline. This indicates that while the model is generally
effective, there are certain aspects that could benefit from further refinement.

Statistics Baseline
(rmse|delta)

risingBALLER
1l,128d)

(rmse|delta)

% delta diff
1l,128d) vs
baseline

risingBALLER
1l,64d

(rmse|delta)

% delta diff
1l,64d vs
baseline

Pass total 95.64|0.20 92.66|0.19 1 94.38|0.20 0

Pass cross 5.94|0.48 5.48|0.44 4 5.62|0.46 2

Pass shot
assist

3.97|0.49 3.81|0.47 2 3.87|0.48 1

Pass goal
assist

1.01|1.22 1.03|1.24 2 1.07|1.29 7

Pass through
ball

2.37|1.08 2.33|1.08 0 2.32|1.08 0

Shot total 5.23|0.42 4.95|0.38 4 4.97|0.40 2

10

Shot xG 0.79|0.64 0.90|0.73 9 0.92|0.74 10

Shot goal 1.27|1.05 1.34|1.09 4 1.31|1.07 2

Interception
won

3.56|0.53 3.65|0.55 2 3.78|0.57 4

Block won 6.16|0.32 6.08|0.31 1 5.96|0.30 2

Clearance
total

10.26|0.44 9.92|0.43 1 9.87|0.42 2

Ball recovery
total

10.09|0.19 9.82|0.18 1 10.28|0.20 1

Counterpress
total

13.77|0.24 13.80|0.24 0 14.30|0.25 1

Dribble
complete

4.04|0.43 4.10|0.44 1 4.08|0.44 1

Foul won total 4.73|0.33 4.72|0.32 1 4.82|0.33 0

Foul
committed

total

4.82|0.31 4.84|0.32 1 4.96|0.33 2

Keeper save 2.68|0.60 2.49|0.57 3 2.59|0.59 1

Keeper shot
saved

4.19|0.51 4.09|0.50 1 4.14|0.50 1

Table 3 Detailed performance metrics for individual statistics in the NMSP task,
comparing the baseline method with the RisingBALLER models (using 64-dimensional
and 128-dimensional embeddings). The table presents the root mean squared error
RMSE and the dispersion coefficient (delta) for each statistic, as well as the percentage
difference in the dispersion coefficient compared to the baseline. The results illustrate
that RisingBALLER generally enhances prediction accuracy, especially in critical areas like
total shots and pass crosses, while also identifying areas for further improvement goal
related statistics.

11

4. RisingBALLER applications, the power of learnable embeddings.

The embeddings learned by RisingBALLER can be leveraged to analyze player
similarities, assess player-team compatibility, and provide tactical insights through spatial
positional embeddings. In the following sections, I present an extensive analysis using
these embeddings. Unless otherwise specified, the player and position embeddings used
were obtained from the best-performing MPP model, 1l64d, as described in Section 3.3.

4.1 Spatial Positional Embeddings Analysis

Accurately encoding player positions on the field is crucial in football analytics for
tactical analysis and retrieving similar player profiles. Traditional methods often represent
player positions using x and y coordinates or similar techniques. For instance, 7 encodes
positions in a three-dimensional Euclidean space to ensure that distances between
players in equivalent roles on opposite sides of the field (e.g., left back and right back)
reflect their profile similarity. While these approaches provide a high degree of
interpretability, they fail to capture the dynamic and evolving nature of modern football
positioning.

In contemporary football, positions are defined not only by traditional spatial zones
but also by the intrinsic attributes and dynamic roles players assume during matches. For
example, in Chelsea's 20162017 Premier League title-winning campaign, Antonio Conte
deployed Marcos Alonso, typically a left back, as a left wing-back, while Victor Moses, an
attacking winger, operated as a right wing-back in a 343 formation. More recently, Pep
Guardiola showcased positional fluidity by utilizing John Stones, a natural center-back, as
a defensive and offensive midfielder in Manchester City's 2022 Champions League final.
These examples illustrate how modern football positions are increasingly characterized by
the versatility and adaptability of players, rather than rigid tactical zones.

To effectively capture this evolution, it is essential to reflect these nuanced roles in
data-driven player performance analysis. RisingBALLER addresses this challenge by
learning high-level positional embeddings that integrate both traditional spatial roles and
player-specific attributes and behaviors observed during each match.

4.1.1 Clustering Analysis of Positional Embeddings

To assess whether the positional embeddings in RisingBALLER accurately
represent spatial zones on the field, I conducted a clustering analysis using embeddings
derived from match-level data. The analysis considered all 25 distinct positions defined in
the StatsBomb data annotation format. By clustering these positions into two and three
groups, I aimed to hierarchically examine the model's ability to differentiate between
tactical zones. Figure 2 illustrates the resulting clusters:

12

Figure 2 Left: Positional embeddings clustered into 2 groups. Right: Positional embeddings
clustered into 3 groups.

The two clusters (figure 2, left) clearly distinguish between defensive/midfield
roles and attacking roles, which is expected in football's tactical organization. Notably,
positions such as wing-backs RWB, LWB and defensive midfielders LDM, CDM are
grouped with central defenders CB, RCB, LCB, indicating that the model understands the
importance of defensive contributions in these roles. Meanwhile, attacking players,
including central attacking midfielders CAM, RAM, wingers RW, LW, and strikers ST,
SS, are clustered together, reflecting their forward-driven responsibilities.

With three clusters (figure 2, right), the model captures additional nuances. For
instance, the blue cluster predominantly contains central players (center-backs, central
midfielders), who are responsible for maintaining defensive and midfield control, while the
orange cluster includes more tactically flexible players, such as wide attackers and
creative midfielders LAM, LW, CAM. The green cluster, interestingly, groups players like
full-backs RB, LB, strikers ST, SS, and goalkeepers GK, reflecting their more isolated
and specialized roles on the field.

4.1.2 Positional Embeddings and Player Embeddings Similarity Analysis

In addition to examining spatial zones, I evaluated whether RisingBALLERʼs
positional embeddings effectively capture players' intrinsic attributes and nuanced roles
on the field. Using cosine similarity on the learned embeddings, I retrieved the top 10
most similar players for each position. This analysis focused on 1,945 players who
participated in at least 10 matches in the dataset; the results revealed several interesting
observations for some players.

13

● Yaya Touré Manchester City) was among the top 3 most similar players to the
Central Attacking Midfielder CAM position, alongside Javier Pastore Paris
Saint-Germain) and Josip Iličić ACF Fiorentina), despite being listed primarily as a
defensive midfielder CDM in most starting lineups. This reflects how well
RisingBALLER captures his dynamic role at City, where he frequently pushed
forward, contributing creatively and offensively.

● Neymar Da Silva Barcelona) emerged as the most similar player to the Right
Central Forward RCF position, even though he predominantly played as a right
winger RW in all matches. This suggests that the model captured his tendency to
move inside and act as a secondary striker, aligning his playing influence more
closely with a central forward role.

● Antoine Griezmann Atletico Madrid), traditionally positioned behind the main
striker or as a wide forward or offensive midfielder, was identified as the most
similar player to the Striker ST role, despite never being deployed as a
conventional number nine. This highlights RisingBALLER's ability to recognize his
impact in central attacking areas, especially during the 20152016 season.

These examples (more in Appendix B.1 illustrate that RisingBALLERʼs positional
embeddings not only encode spatial zones but also capture the intrinsic qualities and
adaptive roles of players during matches. The modelʼs understanding extends beyond
conventional positional labels and rigid zonal classifications, accurately reflecting the
tactical contributions of players like Yaya Touré, Neymar, and Griezmann. In the current
era of data-driven performance analysis and recruitment, RisingBALLER offers a
promising approach to representing modern football player positioning through data.

4.2 Player Embeddings Analysis

4.2.1 Team Cohesion Estimation

One of the primary priorities for football clubs regarding data analytics is player
recruitment. In this context, clubs often generate shortlists of players that meet specific
criteria by querying large databases. These queries typically rely on building similarity
measures based on a wide range of statistics. Consequently, a key objective of the
RisingBALLER architecture, particularly with the Masked Players Prediction MPP task, is
to implicitly learn embeddings that cluster players with similar profiles. This process is
analogous to how language models generate semantically meaningful embeddings in
natural language processing. To assess the quality of the learned embeddings, I selected
several players of interest and retrieved the 10 most similar players using cosine similarity
(multiple examples are presented in Appendix B.2, Table 8. This analysis yielded two key
observations:

● Players from the same team consistently appeared as the most similar
players

14

● Goalkeepers, regardless of their team affiliation, tended to cluster together
more closely than outfield players.

These findings provide intriguing insights. First, the modelʼs ability to learn similar
embeddings for goalkeepers across different teams is likely attributed to the unique
characteristics that distinguish them from outfield players. Unlike outfield players, whose
roles can vary widely based on tactical systems and team context, goalkeepers share
common fundamental tasks, which may allow the model to generalize effectively despite
differences in team affiliations. The model captures the specific patterns associated with
goalkeepers, resulting in embeddings that cluster them closely based on their shared
functions on the field.

Conversely, the embeddings for outfield players are more heavily influenced by
team affiliation. I think this phenomenon likely arises from the limited size of the dataset,
which exposes the model to patterns relative to team identity rather than generalizing
over player profiles across teams. Consequently, players from the same team tend to be
embedded more closely together, especially when they occupy similar positions. While
this indicates that the model successfully captures a teamʼs tactical identity by placing its
players in a similar region, it also highlights a limitation in its ability to generalize player
similarities across different teams for outfield roles.

Despite this limitation, the model's capacity to effectively represent teams by
clustering their players together offers a way for quantifying team cohesion. Specifically,
for all players in a squad, I calculate their cumulative similarity scores with all their
teammates and average these scores by the squad size. The resulting value, which I call
the “team cohesion factorˮ offers an overall measure of how well the players in a given
team fit together. Table 9 Appendix B.2 presents the 10 teams with the highest cohesion
scores in the dataset alongside the 10 teams with the lowest scores. This metric could be
useful for data-driven team building by accessing how much a player affects his team
cohesion.

4.2.2 Similar Player Retrieval

Given that the model learns similar embeddings for players within the same team, it
raises the hypothesis that including team affiliation embeddings (TE, sec 2.2 as inputs for
each player might be heavily contributing to this behavior. To test this hypothesis, I
trained the two versions of the model 1l64d and 1l128d while ablating the team affiliation
embeddings on MPP. Both models were trained for the same number of epochs 2,000
and on the same training and validation splits as previously, with the results reported in
Table 4. In this setup, it was considerably harder for the model to predict the masked
player, as evidenced by a significant drop in accuracy compared to the version with team
affiliation embeddings Table 1. This confirms the intuition that the team information

15

provided as input makes the prediction task much easier, as the model tends to focus on
patterns related to team identity.

Architecture Split steps Cross
entropy loss

Accuracy Accuracy top 3

1l64d train 112K 1.2663 x x

1l64d validation 112K 1.8417 0.4550 0.8006

1l128d train 112K 0.5402 x x

1l128d validation 112K 1.6708 0.5843 0.8830

Table 4 The MPP pre-training results without teams affiliation embeddings; The clear
drop in the accuracies for the two models showcases how harder itʼs for RisingBALLER to
predict the masked players, by being forced to learn more difficult patterns for players
embeddings with a small matches dataset.

Using the embeddings from the best-performing model without team affiliation
embeddings 1l128d, I retrieved the 10 most similar players for a selection of players of
interest and compared the quality of these retrievals to those obtained from the
best-performing model with team affiliation embeddings 1l64d (see Appendix B.2, Table
8. The model that excluded team affiliation information demonstrated superior retrieval
capabilities, as it focused on alternative patterns such as player positional attributes, raw
statistics, and the frequency of adversarial matchups. This approach enabled it to learn
similar embeddings for players with comparable profiles, independent of their team
affiliations.

4.2.3 Summary

The analysis of the players embeddings confirms the architecture design and the
choice of Masked Player Prediction MPP as an effective task for learning high-level
representations of football players. Unlike the intricate hand-crafted features that typically
rely on extensive statistics aggregated per season for each player, often difficult to
reproduce and scale, RisingBALLER provides a more streamlined alternative. It eliminates
the need for multiple pre-processing steps, such as variable grouping, transformations,
standardization, expert knowledge-based weighting, season-level aggregation, and rigid
spatial position encoding that were employed before for football player representation
1,2. Instead, RisingBALLER is built on a features learning method from raw match
statistics and lineup data. The model benefits from a self-supervised training method,
specifically masked player prediction, and utilizes a well-established representation
learning architecture, the transformer, widely used in the literature 1,2,3,4,5,12, to

16

directly encode players similarity at the match level, without requiring any expert-labeled
data.

5. Computational resources/Technical details

I used google colab pro for all the experiments in this research work. I did the
RisingBALLER models training with the Hugging Face Trainer1, on 1 NVIDIA GPU Tesla T4.
RisingBALLERʼs codes for MPP and NMSP are written in PyTorch. The table 5 presents the
training time of the MPP pre-training experiments. For NMSP, each fine-tuning took
between 5 and 10 minutes.

Training Time

MPP 1l,64d , 280K steps Tab 1 2 h 16 min 50 s

MPP 1l,128d, 56k steps Tab 1 35 min 10 s

MPP 1l,64d , 112K steps Tab 4 1 h 03 min 02 s

MPP 1l,128d, 112k steps Tab 4 1 h 15 min 02 s

Table 5 Masked Players Prediction training time.

1 https://huggingface.co/docs/transformers/main_classes/trainer

17

6. Conclusion and FutureWorks

In this paper, I introduced RisingBALLER, a transformer-based model designed to
represent football players and matches by treating each match as a sequence of players.
The model was trained using the Masked Player Prediction MPP, which allowed it to
learn high-level, contextualized player representations. In addition, I proposed Next
Match Statistics Prediction NMSP as a downstream task for RisingBALLER,
demonstrating that the fine-tuned model outperforms a commonly used football
forecasting baseline based on the average across previous matches

The architecture of RisingBALLER trained with MPP have proven effective in
learning rich representations for both players and positions. These representations have
practical applications in modern data-driven football analytics. They include accurate
positional representation for tactical analysis, team cohesion estimation and similar player
retrieval for better and faster recruitment.

FutureWork

The architecture of RisingBALLER allows further applications, taking advantage of
the model's flexibility and predictive power. They include for example:

● Conditioned Optimal Squad Generation (SQUADGEN): one of the most promising
future directions is to leverage the NMSP task to create optimal squads based on
specific criteria (e.g., maximizing the number of crosses). By predicting how
different player lineups might perform in terms of offensive or defensive metrics,
RisingBALLER could assist coaches and analysts in selecting squads that align with
their tactical objectives 1.

● Player Interactions Estimation: The attention matrices within the transformer
architecture provide a unique opportunity to model player interactions during
matches. By analyzing the matrices from one or multiple attention heads, it is
possible to extract insights regarding offensive, defensive, and passing synergies
between players. This analysis could also reveal emerging interactions within the
game 2.

● Scaling-from RisingBALLER to a fully accomplished BALLER Language models
have improved primarily through scaling the transformer architecture used in BERT
2 to larger models 12. This scaling has led to the emergence of new capabilities
in larger models pretrained on extensive text datasets, resulting in the well-known
large language models LLMs we see today. By increasing the size of the
RisingBALLER model, expanding the player vocabulary, and leveraging larger
datasets with a greater diversity of matches, could we anticipate the development
of a comprehensive football model that demonstrates a high-level understanding
of all aspects of the game, including player positions, team identity, and unique
playing styles?

18

References

1 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, Ł.,
Polosukhin, I. 2017. Attention is All You Need. In Proceedings of the 31st Conference on
Neural Information Processing Systems NeurIPS 2017. https://arxiv.org/abs/1706.03762

2 Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. 2018. BERT Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics NAACL 2018. https://arxiv.org/abs/1810.04805

3 Liu, Y., Ott, M., Goyal, N., Du, J., Cardie, C., & Gardner, M. 2019. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics NAACL 2019.
https://arxiv.org/abs/1907.11692

4 Radford, A., Kim, J. W., Xie, L., et al. 2021. Learning Transferable Visual Models From
Natural Language Supervision. In Proceedings of the 2021 IEEE/CVF International
Conference on Computer Vision ICCV 2021. https://arxiv.org/abs/2103.00020

5 Caron, M., Touvron, H., Misra, I., et al. 2021. Emerging Properties in Self-Supervised
Vision Transformers. In Proceedings of the 2021 IEEE/CVF International Conference on
Computer Vision ICCV 2021. https://arxiv.org/abs/2104.14294

6 FIFA. The FIFA Football Language

7 Akhanli, S., Distance construction and clustering of football player performance data
2019, Thesis for PhD.

8 Dinsdale, D., Gallagher, J., 2022. Transfer Portal: An Efficient Framework for Transfer
Learning. In Proceedings of the 2022 Conference on Neural Information Processing
Systems NeurIPS 2022. https://arxiv.org/abs/2201.11533

9 McHale, I., Holmes, B., Estimating Fee Transfers of Football Players using advanced
performance metrics and machine learning. European Journal of Operational Research.

10 Trower, M., Graham, N., Cottrell, N., Hengster, Y., 2023. Clustering Womenʼs
Football Players: Identifying Functional Patterns for Performance Optimization. StatsBomb
Conference 2023 research papers.

11 Loshchilov, I., & Hutter, F. 2017. AdamW Decoupled Weight Decay Regularization. In
Proceedings of the 2017 International Conference on Learning Representations ICLR
2017. https://arxiv.org/abs/1711.05101

19

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2104.14294
https://www.fifatrainingcentre.com/en/game/performance-analysis/football-language-analysis/the-fifa-football-language.php
https://www.researchgate.net/publication/331113091_Distance_construction_and_clustering_of_football_player_performance_data
https://arxiv.org/abs/2201.11533
https://www.researchgate.net/publication/361428873_Estimating_Transfer_Fees_of_Professional_Footballers_using_Advanced_Performance_Metrics_and_Machine_Learning
https://statsbomb.com/news/statsbomb-conference-2023-research-papers/
https://statsbomb.com/news/statsbomb-conference-2023-research-papers/
https://arxiv.org/abs/1711.05101

12 Brown, Tom B., et al. 2020. Language Models are Few-Shot Learners. Advances in
Neural Information Processing Systems NeurIPS 2020. https://arxiv.org/abs/2005.14165

20

https://arxiv.org/abs/2005.14165

Appendix

A. Further experiments

A.1 MPP Architecture search

I conducted a comprehensive architecture search for Masked Player Prediction
MPP within the RisingBALLER framework to identify the optimal model configuration for
learning player representations. This study explored various transformer architectures by
varying the number of layers and embedding dimensions. Each model was trained for
56,000 steps 1,000 epochs) under consistent training conditions with the same
parameters as in section 3.1. The results presented in Table 6 showed that models with
two layers did not offer significant advantages over single-layer models, likely due to the
limited dataset size. Notably, the single-layer model with 128-dimensional embeddings
achieved the best performance in terms of validation loss and accuracy. Additionally, the
64-dimensional single-layer model also showed promising results, which led me to extend
its training for an additional 4,000 epochs as presented in Table 1.

Architecture Number of
parameters

steps Cross entropy
validation loss

Accuracy
top 1

Accuracy
top 3

1l, 32d 185K 56K 1.2744 0.5537 0.8535

1l, 64d 387K 56K 0.9262 0.7207 0.9355

1l, 128d 851K 56K 0.8804 0.7764 0.9507

2l, 32d 195K 56K 1.2819 0.5500 0.8524

2l, 64d 427K 56K 0.9872 0.6728 0.9177

Table 6 Performance Metrics for Various Transformer Architectures in Masked Player
Prediction MPP. The table presents results for different model configurations, varying
by the number of transformer layers (l) and embedding dimensions (d). For each
architecture, we list the number of parameters of the model, training steps, cross-entropy
loss on the validation set, and both top-1 and top-3 accuracy.

A.2 MPP Pre-Training Ablation

To evaluate the impact of MPP pretraining, I fine-tuned the two transformer
architectures 1l, 64d and 1l,128d pre-trained on MPP for the architecture search on NMSP

21

and also trained to the same architecture from scratch on NMSP, under the same training
conditions. The results are presented in Table 7.

Architecture
Number of
parameters

Eval loss with
MPP pretraining

Eval loss
from scratch

1l, 64d 414K 529.65 607.29

1l, 128d 909K 510.33 574.33

Table 7 Evaluation Loss Comparison for NMSP with and without MPP Pre-training: the
values are the global average MSE over all statistics.

The evaluation losses show that the pretraining significantly enhances
performance, a well-known transformer property. Specifically, the 1l,64d model
fine-tuned with MPP achieved an evaluation loss of 529.65 representing 13% of
improvements compared to his from scratch version, and the fine-tuned 1l,128d model
archives 11% of improvements compared to his from scratch version. Furthermore the
validation curves in figure 3 show that models trained from scratch not only take longer to
converge but also fall short of the performance levels achieved by the pre-trained
models.

Figure 3 Validation curves of the two architectures on NMSP, with and without MPP pretraining, fs
means from scratch and ft means fine tuned. The oval circles denote the areas of convergence

with the minimal losses.

22

These analyses suggest that MPP pretraining is crucial for improving model
effectiveness. Also, as the dataset and models size scale up, the benefits of the
pretraining should likely be even more pronounced.

B. Embeddings Analysis

B.1 Players and Positions Embeddings Similarity

Figure 4: Example of nuanced positional embeddings learned by the model, highlighting the
effective roles of players on the field. For each player, I show their ranking among 1,945 players

(with at least 10 matches) based on similarity requests between their embeddings and the position
embeddings. The bar plot shows the frequency of their native positions as reported in the

StatsBomb dataset. All reported players are actually suited for positions different from their native
ones, showcasing RisingBALLER's ability to learn high-level player positioning representations. C

central, D defensive, M midfield, A attacking, ST striker, SS second striker, L left, R right, B
back, F forward

B.2 Players Similarity Requests and Teams Cohesion estimation

Player of
interest

Top 10 most similar players
(model with team affiliation

embeddings)

Top 10 most similar players
(model without team affiliation embeddings)

Cristiano
Ronaldo RM

Jesé Rodríguez Ruiz RM
Francisco Román Isco RM

Mateo Kovačić RM

{'Karim Benzema': 'Real Madrid'}
{'Neymar da Silva: 'Barcelona'}
{'Jesé Rodríguez': 'Real Madrid'}
{'Danilo da Silva': 'Real Madrid'}

23

James David Rodríguez Rubio
RM

Karim Benzema RM
Borja Mayoral Moya RM

Marcos Llorente Moreno RM
Gareth Frank Bale RM

Denis Cheryshev Valencia)
Nacho Fernández RM

{'Toni Kroos': 'Real Madrid'}
{'Imanol Arruti': 'Real Sociedad'}

{'Luis Suárez': 'Barcelona'}
{'Dani Ceballos': 'Real Betis'}
{'Gareth Bale': 'Real Madrid'}

{'Nacho Fernández: 'Real Madrid'}

Lionel
Messi B

Arda Turan B
Munir El Haddadi Mohamed B

Sandro Ramírez Castillo B
Luis Alberto Suárez Díaz B
Sergi Roberto Carnicer B

Aleix Vidal Parreu B
Rafael Alcântara do Nascimento

B
Neymar da Silva Santos Junior

B
Sergio Busquets i Burgos B
Sergi Samper Montaña B

{'Munir El Haddadi': 'Barcelona'}
{'Luis Suárez': 'Barcelona'}

{'Deyverson Acosta': 'Levante UD'}
{'Sandro Ramírez': 'Barcelona'}

{'Santi Mina': 'Valencia'}
{'Marco Asensio': 'Espanyol'}

{'Marc Bartra': 'Barcelona'}
{'Arda Turan': 'Barcelona'}

{'Xabier Prieto': 'Real Sociedad'}
{'Gareth Frank Bale': 'Real Madrid'}

Mesut
Özil Ars

Joel Nathaniel Campbell(Ars)
Francis Joseph Coquelin Ars

Mathieu Flamini Ars
Aaron Ramsey Ars
Jack Wilshere Ars

Santiago Cazorla González
Ars

Alex Iwobi Ars
Petr Čech Ars

Theo Walcott Ars
Per Mertesacker Ars

{'Mathieu Flamini': 'Arsenal'}
{'Aaron Ramsey': 'Arsenal'}
{'Ross Barkley': 'Everton'}

{'Yaya Touré': 'Manchester City'}
{'Mohamed Elneny': 'Arsenal'}

{'Gylfi Sigurðsson': 'Swansea City'}
{'Sandro Cordeiro': 'West Bromwich

Albion'}
{'Jack Wilshere': 'Arsenal'}

{'Steven Davis': 'Southampton'}
{'Darren Fletcher': 'West Bromwich

Albion'}

Kyle
Walker ToT

Kieran Trippier ToT
Danny Rose ToT

Clinton Mua N'Jie ToT
Harry Kane ToT

Nacer Chadli ToT
Erik Lamela ToT

Heung-Min Son ToT
Josh Onomah ToT
Ryan Mason ToT

Alassane Touré GFC Ajaccio)

{'Héctor Bellerín': 'Arsenal'}
{'Joel Ward': 'Crystal Palace'}

{'Daryl Janmaat': 'Newcastle United'}
{'Kieran Trippier': 'Tottenham Hotspur'}

{'Cédric Soares': 'Southampton'}
{'Branislav Ivanović': 'Chelsea'}
{'Craig Dawson': 'West Bromwich

Albion'}
{'Àngel Zaragoza': 'Swansea City'}

{'James Tomkins': 'West Ham United'}
{'Glen Johnson': 'Stoke City'}

Manuel Sven Ulreich Bay M {'Oliver Baumann': 'Hoffenheim'}

24

Neuer
Bay M

Jean-Louis Leca Bastia
Alban Lafont Toulouse)

Stefano Sorrentino Palermo)
Morgan De Sanctis AS Roma)

Jack Butland Stoke City)
Loris Karius FSVMainz 05
Antonio Mirante Bologna)
Gianluigi Donnarumma AC

Milan)
Stéphane Ruffier
Saint-Étienne)

{'Roman Bürki': 'Borussia Dortmund'}
{'Felix Wiedwald': 'Werder Bremen'}
{'Christian Mathenia': 'Darmstadt 98'}

{'Lukáš Hrádecký': 'Eintracht Frankfurt'}
{'Ralf Fährmann': 'Schalke 04'}
{'René Adler': 'Hamburger SV'}

{'Yann Sommer': 'Borussia
Mönchengladbach'}

{'Przemysław Tytoń': 'VfB Stuttgart'}
{'Loris Karius': 'FSVMainz 05'}

Table 8 Comparison of the top 10 most similar players for selected key players from the
20152016 season, as retrieved by two versions of the model: one with team affiliation
embeddings and one without. The model with team affiliation embeddings tends to group
players from the same team, while the model without team information highlights players
with similar attributes and playing styles across different teams. For example, when team
affiliation is excluded, Cristiano Ronaldo is identified as similar to Neymar and Luis Suárez,
indicating that the model captures positional and performance similarities more effectively
without team bias. For goalkeepers, the model with teams affiliation seems to learn more
diverse embeddings while the model without is too much biased to the league; a proof
that having teams affiliation adds more complexity and discriminative features in
goalkeepers representations. These examples illustrate the modelʼs capability to learn
good features for individual player profiles through MPP, which can be valuable for
data-driven player recruitment and squad optimization-(RM): Real Madrid, B Barcelona,
Ars Arsenal, ToT Tottenham Hotspur, Bay M Bayern Munich.

Top 10 teams with the highest cohesion
scores

Top 10 teams with the lowest cohesion scores

Hannover 96 Bundesliga)
Ingolstadt Bundesliga)

Darmstadt 98 Bundesliga)
Leicester City Premier League)

FC Köln Bundesliga)
Gazélec Ajaccio Ligue 1

Real Madrid La Liga)
RC Deportivo La Coruña La Liga)

Napoli Serie A
Caen Ligue 1

AS Monaco Ligue 1
VfB Stuttgart Bundesliga)
Everton Premier League)

Sunderland Premier League)
Newcastle United Premier League)

Sevilla La Liga)
Manchester United Premier League)

Lille Ligue 1
AS Roma Serie A

Troyes Ligue 1

25

Table 9 : Lists of the top 10 teams with the highest and lowest cohesion scores based on
the RisingBALLER modelʼs player embeddings. The “team cohesion factorˮ is calculated
by averaging the cumulative similarity scores of each player with all their teammates.
Teams with high cohesion scores, such as Hannover 96 and Leicester City, indicate a
strong alignment in player profiles, suggesting a well-integrated squad. In contrast, teams
with low cohesion scores, such as Manchester United and AS Roma, have less alignment
in player profiles, potentially reflecting tactical mismatches or a need for improved squad
balance. However, assessing the effectiveness of this metric will need some football club
expert knowledge.

B.3 Analysis of Players Dissimilarity heatmap, the case of Barcelona vs Real Madrid.

I created two heatmaps showing the dissimilarity (lower is better) between the 14 most
frequent players from FC Barcelona and Real Madrid in the dataset. The first heatmap
(figure 4 shows that when team affiliation embeddings are used in the model, players
from the same team have very low dissimilarity, forming clear blocks within each team's
matrix, while the cross-team matrix has high dissimilarity values. This indicates that the
model is heavily relying on team identity to form its player embeddings.

In contrast, the second heatmap (figure 5, generated from the model without team
affiliation embeddings, shows that the model focuses more on individual player
characteristics, learning similar embeddings for players with similar profiles, even if they
play for opposing teams. For instance, Karim Benzema and Luis Suárez, both top-tier
central forwards, show greater similarity. Likewise, Neymar shows more similarity to
Cristiano Ronaldo, and Lionel Messi is more similar to Gareth Bale. Midfielders like
Andrés Iniesta, Toni Kroos, and Luka Modrić also form more similar groups, and
defenders like Raphael Varane and Gerard Piqué share closer embeddings.

26

Figure 5 Dissimilarity heatmap with players affiliation embeddings, the players
embeddings are compared using cosine similarity, the players embeddings used are from

the best performing model on MPP in that setup, 1l64d (scores in Table 1.

27

Figure 6 Dissimilarity heatmap without players affiliation embeddings, the players
embeddings are compared using cosine similarity, the players embeddings used are from

the best performing model on MPP in that setup, 1l128d (scores in Table 4.

28

