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Abstract
Traditionally, the performance of football players has been evaluated using statistics
computed from actions such as goals and assists. However, recent advances in football
analytics have yielded Possession Value Models �PVMs) that provide a more granular and
objective method that can be used to analyse the decision making abilities of a player.
Such models include Expected Threat (xT), Valuing Actions by Estimating Probabilities
�VAEP� and On-the-Ball-Value �OBV�. Nevertheless, these metrics typically only make use
of the data directly related to an event, such as the position of the player with the ball,
and the player who receives the ball. These PVMs do not account for the position of
teammates and opponents when computing the value of the proposed action. We
propose a novel metric called Decision Value �DV� which is computed using Deep
Reinforcement Learning. The model is trained on both event and tracking data to allow
the model to obtain an optimised decision policy that takes both the positions of the
teammates and opponents into account when computing the DV of a particular action.
This model can then be used to assess players by their decision making abilities within
the context of the game. It can also be applied to help scouts to find players that make
the best decisions in particular areas of the pitch, or the ones that make decisions that
align the most with a particular team style of play.

1 Introduction

Analysis of the decision making quality of football players has traditionally been centred
around the use of metrics such as goals scored and assists provided. However, recent
developments in football analytics have resulted in models such as Expected Goals, that
have paved the way for more in depth analysis to take place. By evaluating players based
on these novel metrics, the role of luck is minimised as the situations that take place
throughout the match can be evaluated objectively. The recent surge of football analytics
models has been fueled by the increasing volume of data that is recorded for each match
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that takes place throughout the season, as the first hurdle for developing analytics
models is always finding a suitable dataset.

The most common form of data is event data�1�, which usually contains information
pertaining to the player performing the action, and the player receiving the ball (when
applicable). This information can be used to train Possession Value Models �PVMs) that
offer insightful results into which players perform actions that increase the team’s
possession value the most. However, most PVMs found in literature suffer from the issue
of not considering the surrounding players when providing the valuation for a particular
action. Traditional PVMs only consider factors such as the area of the pitch the ball is
being moved into, the distance and angle to goal, the distance covered through the
action, and the body part used to carry out the action.

In this work, we propose a novel model for evaluating player decisions called Decision
Value �DV�. The model will make use of both the event data and the tracking data to
consider the action within the context that they were taken. The model is trained using
Deep Reinforcement Learning, and the main advantage of the model is that it can take
into account the position of the teammates and opposition players when valuing the
decision made by players.

2 Background and Related Work
2.1 Event Data
Event-based datasets contain the events that occur throughout an entire match �2��3�,
�4�. For each event in the match the dataset contains information such as the type of
action that was carried out, the location of the action, the related player that carried out
the action, the body part used, and the event outcome. Event data can be used to
generate visualisations such as heat maps �5� and passing networks �6�. PVM models
such as Expected Threat (xT) �7�, Valuing Actions by Estimating Probabilities �VAEP� �8�
and the StatsBomb On-the-Ball Value �OBV� �9� can be trained on this type of
event-based data. The xT model assumes that actions are usually taken with the sole aim
of increasing the team’s chance to score. The pitch is split into zones, and an iterative
process is used to find the value of each zone, to identify which zones tend to lead to the
ball being transitioned to more valuable zones.

The VAEP and OBV models work on the slightly more nuanced observation that players
tend to make decisions based on two factors: to increase their team's chance of scoring,
and to decrease their team’s chance of conceding. Several features are extracted from
the moment the action is performed to train two separate models that learn to predict
these values. A comparison between xT and VAEP �10� found that the xT model produced
more consistent results, while VAEP captured the risk-reward tradeoff better than the xT
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model. OBV performs similarly to the VAEP model, although it makes use of StatsBomb’s
latest xG models to value shot actions, and performs better in certain edge cases �9�.

2.2 Tracking Data
Tracking data typically captures the position of all the players on the pitch, consisting of
both the teammates and the opposition. This data is collected throughout the match, with
the positions being recorded at regular time intervals. This type of data can also be used
to generate Pitch Control Models �PCMs) �11�, �12�. These models aim to represent which
areas of the pitch belong to each team. The features used to generate the model vary,
but they typically include the location and the velocity of each player. The output of a
PCM for a given scenario is a cartesian representation of the pitch with values ranging
from 0 to 1 for each coordinate. A value of 0 indicates that should the ball be dropped at
that particular location it would be expected to be given to the opposition, and vice versa
should the value be 1. Thus the degree with which that particular coordinate on the pitch
belongs to the team with possession of the ball can be extracted directly by reading the
output from the PCM.

2.3 Reinforcement Learning
Reinforcement Learning �RL� is a branch of Artificial Intelligence that studies algorithms
that solve sequential decision making problems. An RL-based framework typically makes
use of a state, which is deduced from the observations sensed from the environment, a
set of possible actions that an agent can take, and a reward obtained for taking an action.
This reward can be both positive or negative, the latter indicating that the reward is
actually a cost. When an action takes place, a new state is generated from a new
environment observation, and the process repeats itself, in what is known as the RL
Interaction Loop.

The objective of RL algorithms is to find a policy, a function that maps states to actions,
that maximises the sum of all rewards obtained from the sequence of subsequent
alternating states and actions. One of the strengths of RL is that rather than considering
just the immediate value of an action in the current state, it estimates the long term effect
of the action. RL can be used in both online mode, where the system learns from
interacting directly with the environment, or in offline mode, where the system learns
from historic data.

2.3 RL in Football Analytics
RL techniques have also been used on historic football event data for player decision
analysis �13�. In this work, player behaviour was modelled as a Markov Decision Process
�MDP�. The authors consider the possible actions to be “shoot”, or “move” to another
location on the pitch. The policy was represented as a probability distribution over the
possible actions, to allow for different possibilities to be considered. The reward function
was defined such that a reward of 1 is returned each time a goal is scored, or 0 otherwise.
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The event data was then used to learn the transition function and the policy. From the
results, the authors determined which players made the most 'risky' passes, whilst also
identifying the possible actions particular teams could take advantage of to add a few
goals to their total throughout the course of an entire campaign.

Another example of RL for football analysis was carried out in �14�. In this work, the
authors set out to develop a system that could predict the ideal action to take in critical
scenarios. A critical scenario is defined as the action that takes place before the team
loses possession of the ball (such as the moment before a shot is taken) , or the moment
possession is lost itself. First, a CNN�LSTM model was trained on data obtained from 104
European matches to predict the next action in critical scenarios. The prediction is made
as a probability distribution over the possible actions (pass, foul, clear, and shoot). Policy
Gradient learning was then used to optimise the probability distribution such that it
maximises a reward function that was derived from the Expected Goals (xG) of the
attacking team �14�. The results showed that DRL could also be applied to real world
football event data to learn decision analysis in critical scenarios.

2.5 Combining Event and Tracking Data
More recently, work has been carried out that combines both the event and tracking data,
such as that provided by the StatsBomb 360 dataset �4�. This dataset solves the issue of
manually aligning event and tracking datasets by providing both the event and tracking
data aligned within the same dataset. In their work, StatsBomb proposed a metric called
Line-Breaking-Passes �15�. This model requires a definition of what constitutes a
line-breaking pass, together with the different types of passes that can be carried out.
The main advantage of this metric is that the insights obtained from this model are
informed by both the value obtained from the PVM model, as well as the positions
obtained from the tracking data.

A metric for evaluating player pass decision making was also developed by �16�. In this
work, a heuristic that made use of a PVM was used, in order to quantify the value
obtained from a specific pass. A metric was then devised to predict the likelihood that a
pass is intercepted before it arrives at its destination. This also allowed the authors to
study the risk-reward tradeoff taken by each player when passing the ball. Similar work
was also carried out �17�, where a risk-reward metric was developed to analyse paired
tracking and event data.

While having different research objectives, these works reinforce the hypothesis that
combining event and tracking data together can lead to a more informed situation
analysis than that drawn by using either in isolation.
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3 Methodology
3.1 Dataset
The dataset used to carry out this work was provided by StatsBomb, and contains paired
event and tracking data from 580 games from the English Premier League. The data is
provided from the 2020/21 and 2021/22 seasons of the competition. The events provided
are taken from the fixtures played by 10 teams over both seasons. Each of the 10 teams
play against 19 opponents, providing enough coverage to analyse the results that pertain
to all the teams in the league.

The events were filtered by type, and only “Pass”, “Carry”, “Take On”, “Shot” and
“Clearance” were included. This resulted in around 870,000 actions extracted from the
580 games. The socceraction library �18� was used to load and pre-process the data.

In Reinforcement Learning, a terminal state is a state from which no other action can be
taken. An episode is a sequence of alternating states and actions, starting from some
initial state and ending with a terminal state. In our case, an episode starts when the team
gains possession of the ball and ends when possession is lost.

The events in the dataset were processed to identify which of them correspond to initial
states, and which correspond to terminal states, delineating the separate episodes in
each match. A total of roughly 120 thousand episodes were extracted from the data.

3.2 Possession Value Model �PVM�
To value events within the dataset, two main PVMs were considered, namely the VAEP
model, and StatsBomb’s OBV model. These two were preferred over the Expected Threat
model as it operates on the assumption that the primary motivating factor at all times for
players is to increase their team’s chance of scoring. The VAEP and OBV models operate
on the slightly more nuanced assumption that players are motivated by increasing their
team’s chance of scoring, whilst also decreasing the team’s chance of conceding. The
OBV model used within, and it was implemented through the precalculated values
provided by StatsBomb within the dataset itself.

3.3 Possession Control Model
Implementations of PCM can be found online, however they are not directly applicable for
datasets that do not contain the position of all 22 players at all times. Thus, a custom
implementation was written that can generate a PCM given a frame that contains any
amount of players on the pitch. To generate the PCM model for each event in the
dataset, a Voronoi Diagram was generated �19�. This was done through two main libraries.
First, the voronoi_plot_2d function from the scipy library was used to generate the
polygons that correspond to each section within the final PCM. Then, the cv2 library was
used to render an image from the polygons, whilst also adding a blur around the border of
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polygons belonging to different teams, thus allowing for the grey area between sections
to exist. This was done to ensure that the model does not produce wildly different values
for pixels which are at close proximity to each other.

3.4 Deep Reinforcement Learning Model
Our objective is to generate a model which, given a specific scenario, determines the best
action to take. This is done by learning the value of all the possible actions from historical
data. Given that the size of all possible states is very large, and not fully covered by the
data, we used a function approximation approach which generalises across the data and
extrapolates the value to unseen but similar states. This was implemented using a Deep
Reinforcement Learning �DRL� model, which combines RL with a conventional Deep
Learning model to learn the value function.

Since we are learning from historical data, and the agent is not interacting directly with
the environment, we perform Offline RL to train our model. We used the d3rlpy library,
which incorporates implementations of the most recent RL algorithms and is highly
optimised to perform offline DRL.

3.4.1 Observations

The first step required to frame a problem as an RL task is to determine how to represent
each state in a way that would allow the algorithm to learn from it effectively. A common
form of representation used in previous work is to feed direct data obtained from the
scenario as an observation, alongside some additional preprocessed features �20� �21�. In
our case, the game state is represented as a set of four images that are generated from
the combined event and tracking data provided by StatsBomb, as shown in Figure 1.
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Figure 1� Visualisation of the representation of a given game state

Each image is 105 by 68 pixels. The first one contains the location of the actor (the player
with the ball at their feet), the second one contains the location of the teammates, and
the third one provides the location of the opponents. The fourth one is a PCM
representation that provides the model with additional contextual information that
identifies which areas belong to the team with possession of the ball.

3.4.2 Actions

The actions that the player can take in a particular situation are represented by a vector
of seven numeric values. The first five elements of the vector are a one-hot encoding of
the chosen action, while the last two elements are the scaled and coordinates of the𝑥 𝑦
target location of the performed action, where ��1,�1� represents the top left corner of the
pitch, and �1, 1� represents the bottom right corner. Figure 2 shows an example of a
“pass” action, where the scaled target location was �0.9, 0.5�, which corresponds to
�120,60� in actual pitch coordinates.

Figure 2� The action vector, with the first five elements representing the possible actions,
and the last two elements representing the target location.
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Since we are using continuous numeric values for our action representation, we use
continuous control �21� DRL algorithms to predict the values of this vector. The action
with the highest predicted value will be chosen, with the scaled coordinates as its target
location.

3.4.3 Reward

The reward function, shown in Figure 3, was devised to capture two important aspects of
the chosen action, , when in some state :𝑎 𝑠

1. the value of the action if it is successful, and
2. the risk of the action not being successful (and thus losing possession).

Figure 3� The reward function.

If the action chosen by the player is a shot, then the corresponding reward is the xG value
of the shot. Thus, the higher the likelihood of scoring the shot, the higher the reward. On
the other hand, if the action is not a shot, and the possession of the ball is lost, then the
reward given for the action is a negative constant, indicating that loss of possession is
highly undesirable. In our case, . Since most clearances result in possession being𝑛 = 1
lost, the reward for clearances is always calculated using , as otherwise the model will𝑅

𝑝

simply learn to always value clearances negatively without room for nuance.

If the action is not a shot, but possession is still retained, then the Possession Reward, , 𝑅
𝑝

is calculated from the change in possession value, denoted by , and the pitch controlδ𝑉(𝑎)
value, denoted by the function , of the target location of the action, , when𝑝𝑐𝑚(𝑠, 𝑎

𝑒𝑛𝑑
) 𝑎

𝑒𝑛𝑑

taken in state .𝑠

Figure 4� The possession reward function.

Figure 4 shows how the Possession Reward is computed. If is positive, thisδ𝑉(𝑎)
indicates that the action has increased the possession value. This is weighted by the
value obtained from , which indicates the probability of retaining possession.𝑝𝑐𝑚(𝑠,  𝑎

𝑒𝑛𝑑
)

On the other hand, if is negative, this indicates a decrease of possession value. Inδ𝑉(𝑎)
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this case, the decrease is weighted by the complement of the probability of retaining
possession, .1 − 𝑝𝑐𝑚(𝑠, 𝑎

𝑒𝑛𝑑
)

This mechanism uses the pitch control value to make the reward for an action more
context aware. If an action has a substantial increase in possession value but ends up in a
riskier position, the likelihood of losing possession is higher. Conversely, if the action has
a decrease in possession value, but ends up in a more secure position of the pitch, the
likelihood of retaining possession is higher.

Figure 5 illustrates two actions, with their respective rewards shown in Table 1. In Case 1,
the positive , is scaled down due to the fact that the area poses a slight risk ofδ𝑉(𝑎)
possession loss. In Case 2, the negative is weighted by the probability of losingδ𝑉(𝑎)
possession. Since the ball is expected to end up in an area where possession is likely to
be retained, the decrease in possession value is also scaled down.

Figure 5� Two example actions with their respective possession and pitch control values.

Case 1 Case 2

Table 1� Reward calculation for sample cases

3.4.4 DRL Algorithm

The DRL model was trained using Implicit Q�Learning �IQL� �22�. IQL was specifically
developed to learn the state-action value function, also known as the Q-function, from
offline data. The four images from the observation were combined together into one
4-channel image, which was then passed to a NatureDQN-based encoder �23�. The
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hyperparameters used are listed in Table 2. Default values3 were used for
hyperparameters that are not stated. The reward obtained from the formula shown in
Figure 3 was also scaled to a value in the range ��1, 1�. This was done using the
minmax_scaler from the sklearn library �24�.

Hyperparameter Value

Epochs 1073

Actor Loss 6e-8

Critic Loss 3e-5
Table 2� Hyperparameters used to train the DRL model.

3.5 Expected Goals
To value the shots within the dataset, the StatsBomb xG model �25� was used. The
dataset already includes the precalculated xG values for each shot. So these values were
used as the rewards for “shot” actions in the DRL model, without any need to train a
separate xG model.

4 Results
Our DRL model was evaluated using different criteria. This included evaluating different
possible actions taken within real world scenarios, as well as identifying which players
obtained the highest DV in each main position category �Goalkeepers, Defenders,
Midfielders and Attackers). The average DV obtained by the players was also grouped by
the team for which the action was performed, to obtain a DV League Table which was
compared with the real world league positions obtained by each team. Finally, the DV
metric was used to evaluate how well the transfer activity of clubs in the Premier League
aligns with the areas of the pitch highlighted by the DV model.

4.1 Valuing Different Actions within the same scenario
In the following examples, the DV model’s ability to consider the position of the
surrounding teammates as well as the opposition players will be evaluated, by comparing
the value of different actions within the same scenario. The values obtained in these
examples have been scaled to the range between 0 and 1 to increase interpretability of
the results.

3

https://d3rlpy.readthedocs.io/en/latest/references/generated/d3rlpy.algos.IQL.html#d3rlpy.algos.I
QL, Accessed 30th August 2022
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Figure 6� Valuing Eric Dier's Possible Actions

In this first example, Eric Dier has possession of the ball close to the middle of the pitch.
The DV for 4 different possible passes was calculated. The pass towards the left wing
received the lowest value, which is understandable since it presents a high risk of losing
possession. Passing towards the middle of the pitch to a teammate that is pressed by two
opposition players also receives a lower score since the area presents a greater risk. The
actions that receive the highest DV in this case are the passes in green and blue. The
latter receives the highest DV value, which makes tactical sense, as the teammate at the
bottom of the screen is in more space, and in a better position to move the team forward.

Figure 7� Valuing Oriel Romeu's Possible Actions

In this second example, Oriol Romeu has possession of the ball in a threatening position.
Carrying the ball directly towards the edge of the box receives the lowest DV in this case,
as that area is surrounded by opposition players, and the chance of success is reasonably
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low. The action which receives the highest DV in this case would be to pass it back to the
teammate indicated with the purple arrow. This is due to the fact that the pass is easy to
execute, and the teammate is also in a valuable position, as he can perform an easy pass
to the teammate operating on the left wing.

This result is particularly interesting, as traditional PVMs such as xT might assign a
negative reward to this action, since the ball would be moving to a less valuable location
on the pitch. Passing directly to the teammate on the left wing also receives a higher DV.
The lowest DV pass is to pass it to the right wing, as this area has significantly more
opposition players surrounding the teammates.

Figure 8� Valuing Troost-Ekong's Possible Actions

In this example, Watford’s Troost-Ekong has possession of the ball inside his own penalty
area. The first DV to be calculated is for him to proceed to carry within his own box, which
received a low value. This indicates that it has a higher chance of resulting in possession
loss. The other two simulated actions are clearances. The clearance marked in purple is
directed towards the opposition, whilst the clearance marked in orange is directed
towards an area with no opposition. This is reflected in the fact that clearing the ball
towards opposition is less valuable than clearing it towards an area controlled by your
teammates.

4.2 Average DV obtained by Position
4.2.1 Goalkeepers

Player Name Average DV Count
Ederson de Moraes �0.354565 741
Alisson Becker �0.460242 916
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Aaron Ramsdale �0.495122 704
Edouard Mendy �0.503006 571
Kasper Schmeichel �0.51757 367
Hugo Lloris �0.519072 436
Robert Sanchez �0.539296 987
Emiliano Martínez �0.544221 298
David de Gea �0.55074 431
Alex McCarthy �0.568185 266
Table 3� Average DV obtained for Passes in the Premier League by Goalkeepers  (at least

200 passes)

This data shows that Manchester City and Liverpool have the two best performing
goalkeepers in the league when it comes to passing the ball. This is not surprising, given
how comfortable the two Brazilian goalkeepers are on the ball. Aaron Ramsdale was
purchased by Arsenal at the start of the 2021/22 season, in part due to his ability on the
ball, thus it might seem counterintuitive that he does not achieve a higher score than
Ederson or Alisson. A possible reason for this is that since the model learns the DV from
the outcomes of actions taken by an average premier league player, if the passes were to
be carried out by an average player, they would have a lower success rate than what
Ramsdale achieves.

4.2.2 Defenders

Player Name Avg DV Count Player Name Avg DV Count

Séamus Coleman 0.089674 38 Rúben Dias �0.176835 3516
Robin Koch 0.065084 44 Nathan Aké �0.202367 1255
Cheikhou Kouyaté 0.063654 28 Kyle Walker �0.204106 2322
Kieran
Tierney 0.05986 43 Oleksandr

Zinchenko �0.215581 1358

Jamaal
Lascelles 0.059058 79 Aymeric

Laporte �0.238361 4061

Lucas Digne 0.057613 43 Trevoh Chalobah �0.278672 1749

Joël Veltman 0.055783 93 João Cancelo �0.27929 4475

Rob Holding 0.054375 48 John Stones �0.280319 1296
Ethan Pinnock 0.054067 87 Davinson Sánchez �0.283704 1562
Andreas
Christensen 0.053472 75 Andreas

Christensen �0.290068 1819
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a) Average DV for clearances by Defenders
(at least 25 clearances).

b) Average DV obtained from all actions by
Defenders (at least 900 actions).

Table 4� Defender DV analysis.

Table 4 shows the average DV obtained from defenders using two different criteria. The
first one is the average DV obtained from performing clearances. The second one is the
average DV obtained for all actions. Table 4a highlights which defenders are making the
best decisions with regards to clearing the ball away from danger during the game. It is
interesting to note that in this regard, the highest ranking players hail from various
different clubs, as the list contains players from both relegation threatened teams, as well
as from other well established outfits. When considering all actions, shown in Table 4b,
one team in particular stands out, as Manchester City employed 7 out of the top 10
players with the highest average DV throughout the 2021/22 season. It is also interesting
to note that despite having a very high number of actions performed, the average DV
obtained by Manchester City players is very high, indicating that the values are the result
of long term tactical planning, as opposed to one off high value decisions.

4.2.3 Midfielders

Name Average DV Count Name Average DV Count

İlkay Gündoğan �0.26434 292 Rodri �0.227742 647
Adam Lallana �0.294683 307 Bernardo Silva �0.238212 213
Fernandinho �0.300958 290 İlkay Gündoğan �0.255801 242
Bernardo Silva �0.311137 286 Jorginho �0.275102 363
Mateo
Kovačić �0.341066 307 James

Ward-Prowse �0.286655 240

Oliver Skipp �0.341172 238 Kevin De Bruyne �0.299761 235
Jordan
Henderson �0.359192 496 Pierre-Emile

Højbjerg �0.30889 311

Jorginho �0.360534 600 Mateo Kovačić �0.321072 206
Rodri �0.365304 915 N''Golo Kanté �0.323576 261
Yves
Bissouma �0.380784 458 Fred �0.336103 223

a) Average DV from passes from
defensive midfield by Midfielders (at

least 180 passes)

b) Average DV from passes from attacking
midfield by Midfielders (at least 180

passes)
Table 5� Midfielder DV analysis.

Table 5 shows the midfielders that received the highest average DV for two different
categories, passes into defensive zones on the pitch, and passes into attacking zones of
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the pitch. Table 5a shows that amongst other things, Gundugan and Bernardo Silva are
two industrious players that contribute effectively both going forwards and backwards. It
is also interesting to note that whilst most of the players hail from the traditional Top 6
teams, Brighton employed 2 out of the 10 players within the first table during the 2021/22
season.

Table 5b is once again dominated by Manchester City players, indicating that their players
manage to undertake less risk when making forward passes to teammates. In similar
fashion to Aaron Ramsdale’s inclusion when discussing the Goalkeepers in Section 4.2.1,
by simply observing his actions or reading most analytics, one would conclude that Kevin
de Bruyne is consistently one of the best performing midfielders in the league. However,
the DV assigned by this model does not take individual player ability into account when
performing the calculation, and thus, it could be argued that de Bruyne overperforms his
DV due to his exceptionally high skill.

4.2.4 Attackers

Player Name Avg DV Count Player Name Avg DV Count
Riyad Mahrez �0.263441 579 Riyad Mahrez �0.135018 447
Jack Grealish �0.293717 642 Jack Grealish �0.174115 543
Gabriel Jesus �0.299774 501 Nicolas Pépé �0.17483 166
Raheem Sterling �0.312263 609 Paul Pogba �0.191623 217
Callum
Hudson-Odoi �0.328971 260 Gabriel

Martinelli �0.194877 189

Philip Foden �0.355336 644 Philip Foden �0.202489 468
Nicolas Pépé �0.360095 215 Gabriel Jesus �0.204194 437
Bukayo Saka �0.372763 690 Raheem Sterling �0.214814 583
Heung-Min Son �0.374812 559 Cristiano Ronaldo �0.219422 296
Hakim Ziyech �0.382391 412 Hakim Ziyech �0.219596 282
a) Average DV obtained from passes by
Attacking players in attacking zones (at
least 180 such passes).

b) Average DV obtained from carries by
Attacking players (at least 130 such
carries).

Table 6� Average DV from Passes and Carries obtained by Attacking Players.

Table 6 shows the ability of Attacking players to move the ball forward through carries
and passes as measured through the DV metric. These results show that most of the
highest performing attackers were highly technical players who mostly play on either
wing. Most of the players with the highest average DV in this aspect were also employed
by Manchester City during the 2021/22 season, with Riyad Mahrez and Jack Grealish
being the two best performing players in both aspects. This might offer an explanation as
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to why Manchester City chose to sell two of their attacking players, as they had 5 players
in Mahrez, Grealish, Foden, Jesus and Sterling that perform similarly.

Player Name Avg DV Count Player Name Avg DV Count
Raheem Sterling 0.268763 51 Jamie Vardy 0.249256 27
Heung-Min Son 0.240843 81 Diogo Jota 0.237689 86
Christian Pulisic 0.238608 28 Romelu Lukaku 0.215954 39
Chris Wood 0.198477 36 Kai Havertz 0.213712 56
Sadio
Mané 0.193774 96 Alexandre

Lacazette 0.201098 41

Timo Werner 0.192978 43 Ollie Watkins 0.193582 38
Daniel Welbeck 0.192021 43 Edward Nketiah 0.181173 27
Che Adams 0.186486 49 Cristiano Ronaldo 0.17919 92
Jarrod Bowen 0.186106 40 Harry Kane 0.179186 117
Bryan Mbeumo 0.176171 33 Roberto Firmino 0.178918 29
a)  Average DV obtained from shots by
attacking players that did not play in ST
(at least 25 shots)

b) Average DV obtained from shots players
who played in ST (at least 25 shots)

Table 7� Shooting DV statistics for attacking players.

This final set of results, shown in Table 7, is concerned with the DV obtained from
shooting. In these shooting categories, the model is estimating whether shooting was the
right action to perform considering the surroundings. In table 7A, the average DV obtained
from shooting by attacking players who are not central strikers was calculated. In this
category, there is a mixture of players that are associated with prolific scoring in Sterling,
Son and Mane. However, there are also players that do not score as prolifically as the
aforementioned players, such as Werner and Welbeck. This indicates that whilst these
players are deciding to shoot in the right moments, they might be experiencing a run of
unfortunate finishing or goalkeepers who overperform. Further insight into the finishing
capabilities of the players could be looked into through the PSxG model. These results,
alongside the previous results show that Raheem Sterling has a considerably well
rounded game, as his decision making process is rewarded quite highly from several
different aspects, which might explain why Chelsea were so eager to purchase him.

The players who played primarily in ST and obtained the highest average DV also contains
players that are typically associated with scoring consistently in Vardy, Lukaku, Ronaldo
and Kane. However, a high average score is also obtained by other players that are not
typically associated with such prolific scoring, indicating that they are placing themselves
in the right positions to take high quality shots.
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4.3 DV League Table
To achieve the values shown in Table 8, all the actions that were of the type Carry, Pass,
Take On, Clearance or Shot were processed by the DV model to predict their value
alongside the scenario they were performed in. The values assigned to each action were
then grouped by the team for which the action was performed. The results are shown in
descending order, starting with the team that obtained the highest average DV.

Premier League �  2021/22

Team Name Average DV DV Order Final League
Position Difference

Manchester City �0.243 1 1 0
Chelsea �0.333 2 3 �1
Arsenal �0.340 3 5 �2
Liverpool �0.354 4 2 �2
Tottenham �0.360 5 4 �1
Leicester City �0.379 6 8 �2
Manchester Utd �0.382 7 6 �1
Brighton �0.393 8 9 �1
West Ham �0.406 9 7 �2
Aston Villa �0.421 10 14 �4
Newcastle Utd �0.431 11 11 0
Southampton �0.433 12 15 �3
Crystal Palace �0.451 13 12 �1
Wolves �0.457 14 10 �4
Leeds United �0.478 15 17 �2
Watford �0.482 16 19 �3
Everton �0.488 17 16 �1
Norwich City �0.496 18 20 �2
Brentford �0.501 19 13 �6
Burnley �0.521 20 18 �2

Table 8� DV League Table 2021/22
�Red indicates underperformance over DV, Green indicates overperformance over DV�

The results within this table show that when ordering the teams by how much DV they
received on average, the resulting list aligns well with the actual team standings at the
end of the season. It is interesting to note that the model correctly predicts which teams
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would be playing a UEFA competition next season, barring the inclusion of Leicester
instead of West Ham. It is also noteworthy that Leicester achieved a higher average DV
than a more established team such as Manchester United, which is indicative of how
many of their players have good decision making qualities on the ball. Brighton also
achieved a score that put them quite close to a European position with regards to the DV
league table.

Most fans would argue that Manchester City and Liverpool are the two best teams in the
Premier League, and thus at first glance this table seems to contradict this observation. It
is important to note that this table is valuing actions taken on the ball. The results suggest
that whilst Liverpool do in fact take decisions on the ball that correlate with a top 4
position, some of their best actions also come when they are not in possession of the ball.
This could be through their highly effective pressing that they deploy when possession is
lost to force the opposition to surrender possession in dangerous areas of the pitch. It
could also be the case that some of the most valuable actions taken by the players such
as Trent-Alexander Arnold’s long passes that are critical to Liverpool’s attacking output
would not receive a high valuation by the model since the average player would not be as
successful as he is with passes of such high difficulty.

At the other end of the table, the model also correctly predicts two of the three relegated
teams, Norwich and Burnley. Interestingly, the results show that Brentford made worse
decisions when compared to Norwich. This could be due to the fact that Brentford
achieved a significant portion of the goals from set-pieces, as well as how well they are
able to press opposition players when they don’t have possession of the ball. Both
aspects are not currently captured by our DV model.

Norwich, on the other hand, finished at the very bottom of the table in the Premier
League. However, their average DV indicates that on-the-ball, they were of a higher level
than dead last. This indicates that possibly, they were let down by other aspects of their
game, pressing, their defensive transitions as well as achieving the 2nd worst
underperformance of their xG in the entire league4. When summing the total xG achieved
by their opponents against how many goals they actually achieved, the data also shows
that they might have been unlucky to concede as many goals as they did, indicating that
their season might not have been as bad as it looks at face value.

The results obtained from the DV metric were also compared with the traditional xG
metric, the total xG conceded by a team, labelled as xGA �Expected Goals Against) and
the difference between the xG generated by a team, and the xGA, called xGD �Expected
Goal Difference):

4 https://understat.com/league/EPL/2021, Accessed on August 27th, 2022
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Total xG Total xGA Total xGD Mean DV Mean OBV
�0.82 0.80 �0.86 �0.90 �0.78

Table 9� Correlation between actual team rank and each metric

Table 9 shows that all the different metrics have a very high correlation with the final
league ranking obtained. This indicates that all the metrics have significant explanatory
power. The table also shows that although DV is trained with both xG and OBV, it has the
highest correlation with the team’s final rankings. This is despite the fact that the model is
never made aware of the concept of different teams during the training process, since
each event is treated separately, making use of only the coordinates of the teammates,
opponents and actor on the ball, together with the performed action.

4.4 DV difference per zone of the Pitch
In this section, the average DV obtained per zone for all Premier League teams was
calculated (for the 2021/22 season). For each particular team, the difference between the
average DV per zone and the DV obtained by said team was calculated. The results can
be seen below in Figure 9 and 10 respectively.

Figure 9� DV difference per zone for Manchester United and Manchester City

The results in Figure 9 contain the areas where Manchester United and Manchester City
performed better or worse than the premier league average per zone. The darkest regions
for Manchester United are in the zones typically occupied by the left back, defender,
defensive midfielder, central midfielder, right winger and the striker. This aligns quite
closely with the transfer activity of the club at the start of the 2022/23 season, as with
the exception of the striker, they purchased players to address each of the darker zones
shown in Figure 9.
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Manchester City’s is mostly covered with lighter colours, which is positive and indicates
that they tend to achieve higher DVs across most areas of the pitch. The darkest region of
the pitch is in the position typically occupied by the striker, which is also where they
invested most heavily at the start of the 2022/23 season.

Figure 10� DV difference per zone for Chelsea and Liverpool (attacking towards the
right)

In Figure 10, the same charts have been drawn up for Chelsea and Liverpool respectively.
Whilst some eyebrows were raised at Chelsea’s acquisition of Marc Cucurella, a position
that most did not think required heavy investment, the chart indicates that reinforcements
in this position are quite sensible. Chelsea also purchased a young promising keeper, as
well as forwards Pierre-Emerick Aubameyang and Raheem Sterling. These acquisitions
are in line with the areas that Chelsea should have looked to improve, according to the
chart in Figure 10.

For Liverpool, the chart shows that some of the worst performing areas were the
attacking zones, with zones typically occupied by attacking midfielders and strikers. This
aligns well with the areas that Liverpool chose to reinforce this year, as they purchased
striker Darwin Núñez, as well as midfielder Artur on loan. The darker zones on the right
hand side might also indicate that Trent-Alexander Arnold tends to make risky actions
that would yield a much lower rate of success were they to be attempted by players with
a lower skill level.

5 Conclusion
In this work, we propose a new framework, named Decision Value, through which player
decisions are assessed within the context of the game. While traditional PVMs lack the
ability to consider the surrounding players, our model combines both event and tracking
data to evaluate an action. The StatsBomb 360 data from 10 teams over 2 seasons of the
English Premier League was used to train a DRL model, which uses the current position of
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the player with the ball, the position of his teammates and those of the opponents. A
pitch control model that predicts the likelihood of retaining or losing possession was also
developed, which was also used as input to the model.

The results show that our model accurately differentiates which actions have a higher
Decision Value within the context of the game. We also analysed the model in a more
quantitative manner, by comparing it with other football analysis metrics. The average DV
of players had a high correlation with their actual performance, and the average DV of the
whole team also correlated highly with the DV League table. Finally, an analysis of the
average DV difference between teams’ performance per zone over the Premier League
average showed explanatory power with regards to the transfer activity of Premier
League clubs.

5.1 Future Work
While the model is already yielding accurate results, there are various opportunities for
further research and improvements. Since the StatsBomb 360 dataset does not have the
positions of all players on the pitch, one improvement would be to train the RL model on a
dataset that contains the positions of all the on-field players. Another aspect that could
be taken into account is the velocity of the players when computing the PCM.
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