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1. Introduction 
Measuring goal likelihood of possession sequences in football is a key analytical challenge that helps 
evaluate attacking threat beyond just goals and shots. Numerous studies have addressed this challenge 
using a number of probabilistic models to estimate goal likelihood from game situations [1, 2, 3]. In 
particular, the Expected Threat (xT) metric measures the probability of a goal by modelling a play 
sequence as a discrete-time Markov process which considers shot and move transition probabilities [1]. 
However, this Expected Threat model does not explicitly consider the player locations of teammates and 
opposition players, meaning that the attacking threat at a given state of play is considered the same 
irrespective of the defensive structure and attacking positioning.  
 
Whilst the Expected Threat metric has proven to be a very useful metric for valuing attacking danger 
based on ball location, investigating how the positions of attackers and defenders influence the threat 
value will help coaches identify and better understand the strengths and weaknesses of a team’s 
positional setup. Player positioning is a key part of team training, with off-ball movement playing a key 
role in football play outcomes. Whilst these play key parts in football training and game outcome, it is 
difficult to objectively quantify the effectiveness of a defensive unit or attacking setup. We therefore 
propose a spatial xT model which considers player positioning when modelling goal likelihood.  
 
Specifically, we focus on introducing spatial context to the transition model that is at the core of 
Expected Threat. The emergence of widespread tracking and contextual event data (e.g. StatsBomb 360) 
in recent years has led to a surge of research into various spatial metrics. This research includes a pitch 
control model [4, 5] to measure ball control probabilities and an interception model [6] to quantify pass 
risk. In this paper, we adapt these pre-existing spatial metrics for use as input channels for a 
convolutional neural network (CNN) that uses them to predict refined ball transition probabilities. We 
validate this approach by comparing the predictive accuracy of our spatial xT to the original Expected 
Threat transition model, finding that our model outperforms this approach in calculating ball transition 
probabilities and goal likelihood. 
 
Using this spatial xT model, we propose a novel way of valuing attacking and defensive units in football 
by computing a ‘Threat Above Expected’ (TAx) metric which measures the change in goal probability 
resulting specifically from spatial context by comparing spatial xT to the original xT value. Using this 
metric, we evaluate team defences and attacks over a set of games from the English Premier League 
2021/22 season. We also demonstrate a concept for a positional defensive optimiser that can offer 
coachable insights by identifying improvements in defensive setups during post-match analysis to 
minimise the spatial xT value. 
 
In summary, this paper presents the following contributions to research in football: 
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 A novel modification of the Expected Threat model, which uses a convolutional neural network 
to build a new spatial xT model with a 19.2% decrease in log loss score compared to the original 
model when predicting ball transitions. 

 A combination of spatial maps designed to capture contextual information specifically from 
StatsBomb 360 data. Furthermore, we perform an ablation study to validate the impact of each 
spatial map. 

 Based on our modified threat model, we propose a TAx metric to measure the success of 
attacking and defensive positioning in football. 

 We apply our framework to ten teams in the English Premier League 2021/22 season, 
demonstrating several team evaluations and post-match analysis concepts that could be used by 
clubs using this model. 

 We demonstrate a concept for a positional defensive optimiser that finds situations of high 
threat and calculates optimal defensive setups, presenting as a post-match analysis tool to 
improve team defences. 

 
The rest of this paper is structured as follows: in Section 2, we give a background of related work in the 
field. Section 3 introduces the Expected Threat formulation and defines the problem space. Section 4 
outlines the spatial maps we will use to add context to our Spatial xT model. Section 5 explains the CNN 
architecture used to predict ball transition probabilities. In Section 6 we validate our model by 
performing an ablation study on the spatial input channels and comparing its predictive accuracy to the 
original Expected Threat model. Section 7 is a case study of model applications. Finally, Section 8 
concludes the paper. 
 
2. Background 
The idea of modelling play sequences in football as a discrete-time Markov process was first introduced 
in [7]. This idea was extended in [1], which introduced the Expected Threat (xT) metric, measuring goal 
likelihood from a play sequence. Other models also value actions and game states, such as the Valuing 
Actions by Estimating Probabilities (VAEP) framework introduced in [2]. This instead measures the 
probability of both scoring and conceding a goal at a given game state. A critical comparison is given 
between VAEP and xT in [8]. Van Roy et al. [9] use the xT model to analyse football decision-making, 
finding that teams could score more goals if they took more shots outside the penalty box. Van Roy et 
al. [10] build an extended xT model using StatsBomb 360 data which investigates the impact of 
teammate reachability on the success rate of a team reaching the attacking third during build-up play. 
We also modify the xT model but instead focus on refining transition probabilities using a number of 
spatial maps given to a CNN model. Furthermore, we specifically analyse both attacking and defensive 
positioning in the final attacking third and give an updated spatial xT value.  
 
Several approaches have been considered to value space and positioning in football. Spearman [4] uses 
a probabilistic physics-based model to objectively value off-ball scoring opportunities in football. 
Defensive positioning is focused on in [11], where the impact of defences on opposition pass availability 
is measured using a graph convolutional network with tracking data input. Fernandez et al. [3] calculate 
goal likelihood probability using the context of player positions and velocity with tracking data by using a 
series of deep neural networks to predict pitch surfaces. We similarly model goal likelihood using player 
positions, but instead use StatsBomb’s contextual event data rather than tracking data. Furthermore, we 
build an adapted spatial model using the structure of the xT model, which doesn’t consider player 
locations, so that the effect of player positioning on goal likelihood can be compared effectively against 
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an average. Fernandez et al. [3] also calculate the likelihood of either team scoring at a given game 
instance, whereas the xT metric focuses only on the threat of the attacking team. 
 
Spatiotemporal tracking data has furthered the development of physics-based models in football. 
Spearman et al. [5] estimate pass success probabilities by modelling ball and player trajectories. Link et 
al. [12] focus more on estimating imminent goal threats using factors such as player ball control and 
opponent pressure. These models use tracking data to model trajectories, however, StatsBomb 360 data 
contains only player locations. Burriel et al. [6] consider this by using StatsBomb 360 data to model pass 
risk and reward using interception probabilities which assume initial player velocities of 0. Our updated 
transition model uses the formulation introduced in previous ball control [5] and interception [6] models 
to model transition probabilities with StatsBomb 360 data. However, adjustments to these models are 
made to match the structure of the Expected Threat model. 
 
There have been several studies that use CNNs to spatially interpret game situations in football. 
Fernandez et al. [13] use a CNN architecture to estimate pass probability surfaces in football. This 
example uses tracking data input, whereas in [14], player locations are used from StatsBomb 360 data to 
build a CNN which probabilistically classifies penetrative passes into the convex hull of a defence. Our 
model also spatially interprets game situations using a CNN but instead estimates transition probabilities 
within the Expected Threat model framework. 
 

3. Standard Expected Threat 
We aim to calculate an improved Expected Threat framework that considers the locations of attackers 
and defenders and identifies the most likely play transitions during a possession sequence. Expected 
Threat [1] is a probabilistic framework that iteratively models on-field actions to calculate the likelihood 
of a goal from a possession sequence. This is made computationally tractable by dividing the pitch into 
an (𝑀 × 𝑁) spatial grid of states, as well as adopting the Markov assumption such that state transitions 
are a function only of the current state. We will adopt the same assumptions throughout this paper. The 
Expected Threat equation is:  
 

xT௫,௬ = ൫𝑠௫,௬ × 𝑔௫,௬൯ + (𝑚௫,௬ × ෍ ෍ 𝑇௫,௬→௡,௠

ெ

௠ୀଵ

xT௡,௠

ே

௡ୀଵ

) 

 
Where xT௫,௬ is the likelihood of a goal occurring during the possession sequence starting at state (𝑥, 𝑦), 
𝑠௫,௬ is the probability of a shot being taken, 𝑔௫,௬ is the probability of a goal being scored given that a 
shot is taken, 𝑚௫,௬ is the probability of the ball being moved (e.g. passed to a teammate), and 𝑇௫,௬→௡,௠ 
is a transition matrix which, for the ball-carriers pitch state, details the probability of successfully 
transitioning to each state on the pitch given that a move action is taken.  
  
Evidently, the equation above has a recursive structure. For this paper, we iterate through the xT 
equation five times meaning that we model the likelihood of a goal in the next five actions for the 
attacking team. We also split the pitch into a 16x12 grid, meaning that the total number of pitch states is 
192, as visualised in Figure 1. 
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Figure 1 – Pitch grid showing all possible game states, with darker cells showing areas of higher 𝑥𝑇. 

 
In the Expected Threat framework, all probabilities, 𝑠, 𝑔, 𝑚 and transition probability matrix 𝑇, are 
estimated from observed frequencies in past event data. The probability of possession loss is also 
factored into the model through failed shots and failed move transitions. As this learning process only 
uses event data, transition probabilities only consider ball location, and do not explicitly consider the 
location of attackers and defenders.  
 
In order to introduce spatial context to the xT framework, we choose to focus on the transition matrix 𝑇 
as we believe this is the parameter most heavily affected by player location, and this also allows us to 
evaluate model accuracy more rigorously by treating the transition matrix as a distinct probabilistic 
model, as goals are substantially rarer than transitions in football. We will denote our contextual 
transition matrix as 𝑇∗, and in turn use it to define a spatially-aware xT model capable of more accurate 
threat predictions One challenge for such a model is that Expected Threat is calculated recursively 
across multiple iterations, and hence forecasts of future player locations are required for a complete 
spatially-aware xT. This is beyond the scope of this paper, and so we use 𝑇∗ only in the first xT iteration 
computed from known player locations from StatsBomb 360 data, reverting to the conventional xT 
formulation for subsequent iterations. Refinement of shot, goal and move probabilities, 𝑠, 𝑔 and 𝑚, are 
left for future work, and are estimated in the same way as for the original model for our new model. In 
the following sections, we discuss different spatial contexts and how they can be used to learn the 
improved transition matrix 𝑇∗. 
 

4. Contextual Expected Threat Model 
Using Statsbomb 360 data, we can now use added game context to build a spatially-aware transition 
model 𝑇∗ which factors in defensive positioning and attacking space to learn a distribution of 
probabilities over state transitions or possible possession loss. To do this, we produce several spatial 
maps with dimensions equal to that of our (𝑀 × 𝑁) pitch grid (see Figure 1). Each of these spatial maps 
is somewhat heuristical in design, intended to provide a signal to the CNN model we introduce later in 
the paper by capturing different notions of what might motivate the ball carrier to make a particular 
pass. The spatial maps we will focus on in this paper are as follows: 
 
1. Teammate Distribution – The distribution of attacking teammates in each zone. This considers the 

distance of the zone from the ball carrier and the closeness of attacking teammates to this zone. 
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2. Interception Probability – The probability of the ball being intercepted by the defensive team on the 
way to each zone. 

3. Control Probability – The probability that the attacking team will successfully control the ball given 
that it arrives at each zone. 

4. Original xT Transitions -  A spatial map of 𝑇௜,௝→௫,௬ for each grid cell (𝑋, 𝑌) where (𝐼, 𝐽) is the location 
of the ball carrier.  

5. Original xT outputs – A spatial map of xT୶,୷ calculated for each grid cell (𝑋, 𝑌). Hence this map is 
independent of the current ball location. 

 
These spatial maps give information on the likelihood of pass completion for each state. Teammate 
distribution is used to show whether there are teammates in or near that state to be passed to, whilst 
the control and intercept probabilities measure the likelihood of a pass to that state being successful. 
Finally, the xT spatial maps give information about the threat of a potential transition and allow 𝑇∗ to 
possibly be refined by knowledge already encapsulated in 𝑇 and xT. We validate the predictive value of 
each spatial map in an ablation study in Section 6.1. It is worth noting that the first three spatial maps 
only calculate values within the visible area given in StatsBomb 360 data, as player locations outside of 
this area are unknown. Therefore, for the first three spatial maps, pitch states outside the visible area 
are given values of 0. In the following subsections, we will go into further detail on how the first three of 
these spatial input channels are modelled. 
 
4.1 Teammate Distribution 
The teammate distribution model is a 2D Gaussian mixture model with components specified by ball 
location and teammate locations. These represent areas of the pitch close to the ball and teammates on 
the pitch to model likely ball transitions. For each teammate and the ball, we therefore generate 
distributions within the mixture model formulated as: 
 

Ball Distribution: 𝑁(𝜇஻ , 𝜎஻) 
Teammate Distributions: 𝑁(𝜇௠, 𝜎௠) for each 𝑚 in 𝑀 
 

Where 𝜇஻ is the ball location, 𝜎஻ is the standard deviation of ball motion, 𝜇௠ is the location of 
teammate 𝑚𝜖𝑀 where 𝑀 is the set of all visible teammates, and 𝜎௠ is the standard deviation of 
teammate motion. We define 𝜎஻ as 23.9 metres, which is a maximum a posteriori estimate from [4], 
which uses a normal distribution around ball location as the basis for a physics-based pass probability 
model. For the teammate distributions, we set 𝜎௠ as the square root of the Euclidean distance between 
the ball and the teammate 𝑚, representing that the distribution around nearby teammates is smaller as 
a pass to them is likely to be more accurate. We then discretise the mixture model for the spatial grid 
and normalise to unity. An example heatmap is given in Figure 2. 
 



 

6 

 
Figure 2 – Pitch grid showing a heatmap of the teammate distribution. The darkest cells are those with the highest 

discretised mixture probability. 

 
4.2 Interception Probability 
The interception probability models the likelihood of a move action from a start zone 𝑠 to an end zone 𝑠′ 
being intercepted. We calculate this for every possible end zone to generate a spatial grid of intercept 
probabilities. The following model adapts and extends previous work done by Burriel et al. [6], which 
models the likelihood of a successful defensive interception as:  
 

𝐼(𝑠′, 𝑠) = 1 − ෑ (1 − 𝑃௜௡௧௘௥௖௘௣௧
∗ (𝑑, 𝑠′, 𝑠) 

ௗ∈஽
) 

 
Where 𝐼(𝑠ᇱ, 𝑠) is the interception probability between 𝑠 and 𝑠ᇱ, 𝐷 is the set of visible defensive players, 
and 𝑃௜௡௧௘௥௖௘௣௧

∗ (𝑑, 𝑠′, 𝑠)  is our interception probability for defender 𝑑, which is calculated by extending 
the interception model in [6] with two added modifications. We define this as: 
 

𝑃௜௡௧௘௥௖௘௣௧
∗ (𝑑, 𝑠′, 𝑠) =  𝑃௜௡௧௘௥௖௘௣௧(𝑑, 𝑠ᇱ, 𝑠) × ൫1 − 𝑃௖௢௡௧௘௦௧௘ௗ(𝑑, 𝑠ᇱ, 𝑠)൯ × (1 − 𝑃௟௢௕௕௘ௗ(𝑑, 𝑠ᇱ, 𝑠)) 

 
Where 𝑃௜௡௧௘௥௖௘௣௧(𝑑, 𝑠ᇱ, 𝑠) is the intercept model in [6] using extracted ball and player velocity 
parameters from [5], with the assumption that initial player velocity is 0m/s. 𝑃௖௢௡௧௘௦௧௘ௗ(𝑑, 𝑠ᇱ, 𝑠) is the 
likelihood of an attacker at the destination 𝑠′ contesting the interception by defender 𝑑, and 
𝑃௟௢௕௕௘ௗ(𝑑, 𝑠ᇱ, 𝑠) is the probability that the ball is successfully lobbed over the defender 𝑑. Essentially we 
modify the base intercept model in [6] by making successful interceptions conditional on i) the ball being 
below the head height of the defender, and ii) being uncontested by an attacker at the destination. 
 
Specifically, 𝑃௖௢௡௧௘௦௧௘ௗ(𝑑, 𝑠ᇱ, 𝑠) models the likelihood of an attacker at 𝑠′ reaching the trajectory point 
where the defender 𝑑 is looking to intercept before the ball arrives there, which is calculated using the 
same intercept model as in [6]. To calculate the successful lob probability, 𝑃௟௢௕௕௘ௗ(𝑑, 𝑠ᇱ, 𝑠), we simulate 
ball trajectories for every integer pass height angle between 𝜃௦௧௔௥௧ = 20° and 𝜃௘௡ௗ = 60° and find the 
proportion of angles where the pass would successfully go over the defender’s head(defined as 2 
metres). This is denoted as: 
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𝑃௟௢௕௕௘ௗ(𝑑, 𝑠ᇱ, 𝑠) =  
∑ H(ℎ௖(𝜃) − 2)଺଴

ఏୀଶ଴

𝜃௘௡ௗ − 𝜃௦௧௔௥௧ + 1
 

 
Where H is the Heaviside step function, 𝑐 is the point on the ground beneath the trajectory where the 
defender will try and intercept (e.g. the closest point on the trajectory to the defender), and ℎ௖ is the 
height of the ball at point 𝑐 given pass height angle 𝜃.  We calculate ℎ௖ using standard equations for 
projectile motion: 

ℎ௖(𝜃) =  Δ௦,௖ tan(𝜃) −
Δ௦,௖  ଶ𝑔

2𝑏௩
ଶcos (𝜃)ଶ

 

 
Where Δ௦,௖ is the distance between the interception point and the ball’s starting location, 𝑏௩ is the initial 
ball velocity and 𝑔 is the acceleration due to gravity (9.8m/𝑠²). Ball velocity for these calculations is 
taken to be: 𝑏௩ = ඥ𝑔 × Δ௦,௦ᇱ   where Δ௦,௦ᇲ  is the distance between the ball location and the intended 
end location. This represents the velocity needed for the ball to be kicked at 45-degree trajectory and 
land exactly at the destination.  
 
We can use the intercept equation to form a spatial grid of interception probabilities across the pitch. 
An example heatmap is given in Figure 3. 
 

 
Figure 3 – Pitch grid showing a heatmap of the intercept probability relative to the current ball state. The highest 

value states are those blocked by the defending opposition players. 

 
4.3 Control Probability 
The probability of the attacking team successfully controlling the ball given that it arrives at a certain 
state is now considered. To compute this, we use the pitch control models developed in [5, 4]. These 
models consider a player’s likelihood of controlling the ball as a Poisson point process which increases in 
likelihood when a player has more time in proximity to the ball without opposition interference. 
Parameters used for this model are detailed in [4], with the initial velocity instead set to 0m/s as these 
data points are not available. We discretise this as a spatial pitch control grid by finding control 
probabilities for the midpoint of each grid zone. An example is shown in Figure 4. 
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Figure 4 – Pitch control grid, red zones highlighting high probability of the attacking team retaining the ball, blue 

zones highlighting low probability of the attacking team retaining the ball. 

5. Contextual Model Architecture 
After calculating the spatial input maps, we wish to use them to compute more accurate ball transition 
probabilities. This will produce a new contextualised transition model 𝑇∗ within Expected Threat, and 
consequently a new xT value. We use a convolutional neural network (CNN) architecture, as these are 
an established architecture for learning from spatial data in a flexible way. At every event, we pass in a 
𝑀 × 𝑁 × 𝐶 matrix, where 𝑀 × 𝑁 is the 2D pitch grid and 𝐶 is the number of input channels. The CNN 
architecture we use has similarities to the architecture used in [13], which builds pass success 
probability surfaces in football. For example, the use of symmetric padding is used in convolutional 
layers to maintain pitch dimensionality, and a max pooling layer is used to learn wider spatial context. 
However, there are also many differences between our models, and we therefore describe our model 
architecture below. Figure 5 details the structure of the CNN, with reasoning explained further for each 
section of the architecture. 

 
Figure 5 – CNN Model Architecture for 𝑀 × 𝑁 × 𝐶 input 

1 – Input 
We use an input of M × N × C. Spatial grids are inputted as input channels, and we therefore include our 
previously defined spatial grids in the final model architecture.  
 
2&3 – Conv2D Layer with ReLu activation 
The inputs are passed into a 2D convolutional layer with 32 filters, kernel size of 2 ×  2 and stride of 1. 
Symmetric padding is used to maintain pitch dimensionality when the kernel is applied. A ReLu 
activation function is applied, and a dropout layer with a dropout rate of 0.4 is used to limit overfitting.  
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4 -  Max Pooling 
A 2D max pooling layer with a pool size of 2 ×  2 is used to represent the field at half its length and 
width. This reduces overfitting and computation costs, whilst helping capture wider spatial features. 
 
5&6 – Conv2D Layer with ReLu activation 
This layer uses the same parameters, activation function and dropout as layer 2&3. Reduced 
dimensionality from the pooling layer will help identify wider spatial features. The output is flattened to 
be passed into a dense layer. 
 
7&8 – Dense Layer with Sigmoid activation 
This dense layer uses outputs from the convolutional layer to generate probabilities with size 𝑀 × 𝑁 +

1, which is equivalent to the number of possible end states, including a possession loss. A sigmoid 
activation function and dropout layer is used with a dropout rate of 0.2. 
 
9&10 – Dense Layer with Splitting 
We pass our model outputs into a final output layer of 𝑀 × 𝑁 + 1 neurons. To appropriately receive a 
distribution of probabilities for the transition outcome, we use a Softmax activation function. After this, 
we split the output into the 𝑀 × 𝑁 output states corresponding to pitch zones, and the final output 
relating to the probability of a possession loss. 
 

6. Model Evaluation 
Now that we have set up a spatial xT model which uses a CNN architecture to predict transition matrix 
𝑇∗, we will evaluate the accuracy of its predictions. Unless otherwise stated, the CNN is trained using all 
of the spatial maps outlined in Section 3, where the original xT maps are computed using training data. 
The way we evaluate our model is three-fold. Firstly, we will perform an ablation study on our model 
input where each spatial map given to the CNN will be independently removed to evaluate its impact on 
model performance. Secondly, we evaluate the predictive accuracy of the model for state transitions 
compared to the original xT model. Finally, we evaluate the accuracy of the final xT value in predicting 
goal likelihood using the spatial xT model in comparison to the original xT model. 
 
When training and evaluating our model, we use StatsBomb 360 data from games for 10 teams in the 
English Premier League seasons 2020/21 and 2021/22.  We only use events in the final attacking third to 
build a model focussed on transitions in dangerous attacks. Based on this, we use 24259 events and 
24215 events in the 2020/21 and 2021/22 seasons respectively. The way this data is split is varied for 
each evaluation and is therefore explained in each subsection. It is noted that the model is trained over 
100 epochs with a batch size of 32. Early stopping is also implemented which monitors the validation 
loss with a patience of 2 to limit overfitting. As the model is probabilistically classifying outcome states 
of events, we use categorical cross-entropy loss as the loss function. Finally, adaptive moment 
estimation (Adam) [15] is used as the optimization algorithm during model training with a learning rate 
of 0.001. 
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6.1 Evaluation of Model Channels 
We first perform an ablation study by evaluating each spatial map used by the model to review its 
influence on predictive performance. To do this, we perform 10-fold cross-validation on 2020/21 season 
move events with an 80:10:10 split for training, validation and testing at each fold. We also include the 
original xT model transition probabilities as a comparative baseline. This evaluates predictive accuracy 
for move transition probabilities outputted by the contextual transition model, 𝑇∗, meaning that there 
are 193 classification outcomes for our 16x12 grid with one outcome labelled as a failed action. For each 
event, the target variable will be a one-hot encoding with a 1 in the end state for the event i.e. the end 
zone of the move action. Figure 6 details the predictive accuracy of each model. 
 

Figure 6: Comparisons of the predictive accuracy of the transition models. 

Model Log Likelihood 

Empirical transition model, 𝑇 -5.065 

𝑇∗ without Teammate Distribution channel -4.176 

𝑇∗ without control channel -4.199 

𝑇∗ without intercept channel -4.176 

𝑇∗ with intercept model from [6] -4.167 

𝑇∗ without xT channels1 -4.192 

Contextual transition model, 𝑇∗ -4.159 

 
It is shown here that the contextual transition model, 𝑇∗, with all spatial channels passed to the CNN has  
the highest predictive accuracy, justifying the use of each channel. As shown above, we also show that 
the added parameters to the interception model in [6] have led to an improved prediction accuracy of 
state transitions. 
 
6.2 Evaluating the Transition Model  
We now evaluate the predictive accuracy of our contextual transition matrix 𝑇∗ over a season of testing 
data. Similarly to the evaluation in Section 6.1, the predictive accuracy of the transition probabilities is 
evaluated when considering the actual end zone for each event. In this evaluation, we perform a 90:10 
split on the 2020/21 season move events into training and validation, and test the model on move 
events from the whole 2021/22 season. Now that each spatial map in our model is justified, we compare 
this model directly to the empirical transition model in xT to see if the contextual transition model, 𝑇∗, 
has improved predictive accuracy for ball transition probabilities. Results can be seen in Figure 7. 

 
1 Refers to both the spatial xT grid and the original xT transition grid. 
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Figure 7: Comparisons of the predictive accuracy of the transition models. 

Model Log Likelihood 

Empirical transition matrix, 𝑇 -5.137 

Contextual transition matrix, 𝑇∗ -4.151 

 
It is shown here that the contextual transition model has improved the predictive performance of ball 
transitions compared to the empirical transition matrix 𝑇. 
 
6.3 Evaluating Expected Threat Values 
Finally, we evaluate the predictive accuracy of the model for the spatial xT value. For this evaluation, 
the model is trained and tested over the same datasets as those in Section 7.2. However, shot events 
are also included in the test dataset, leading to an additional 2232 test events. We compare our model 
accuracy to the original xT model. To calculate predictive accuracy, as the xT value models goal 
likelihood in the next 5 actions, we use the xT value as a probabilistic prediction of a goal within 5 
actions and use a binary target variable which is set to 1 for events where there is a goal within the next 
5 actions in the data. Results can be seen in Figure 8. 
 

Figure 8: Comparisons of the predictive accuracy for the final xT value. 

Model Log Likelihood 

Original xT Model -0.08796 

Spatial xT -0.08759 

 
As shown, the new model shows slight improvement over the original xT model. As our model currently 
modifies the transition matrix, an interesting step for future work would be to also model the shot 
probability model within xT and evaluate its influence on these results. 
 

7. Model Application: TAx Case Study 
In this section, we present an example of an application of our spatial xT model. We recall that the 
parameters of the original xT model are estimated by counting the frequencies and grid location of 
events from past data, without incorporating any further spatial context. In some sense then, this xT 
definition represents the average threat, independent of further spatial context. Because our spatial xT 
model explicitly includes this context, we can compare the two xT values to better understand how the 
spatial context has increased or reduced the threat of a matchplay situation versus the average 
expected for the same pitch location. For example, we could understand whether the observed 
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defensive structure has reduced the threat of a goal versus the xT baseline - or even versus other 
hypothetical defensive structures that could have been employed. 
 
As the spatial xT model modifies the Expected Threat model by adding player positions, we can consider 
a new metric that evaluates how the player locations have added or reduced the threat of an attacking 
situation. This could be used as a way to value the positioning of a team’s attack or defence by reviewing 
how their positioning increased or decreased the threat of the situation in comparison to the original xT 
value, which is essentially the average threat for a given state. We therefore present a new ‘Threat 
Above Expected’ (TAx) metric, this is expanded on in the following subsections. 
 
7.1 Threat Above Expected Metric 
As discussed previously, the original xT model will output an average attacking threat as it is using past 
event data. Therefore, we can compare the attacking threat output from the spatial xT model to the 
original xT model to review how player positioning has affected goal likelihood. To properly evaluate 
this in an interpretable way, we propose a new TAx metric formulated as: 
 

TAx = 100 ×
൫xT௦௣௔௧௜௔௟ − xT௢௥௜௚௜௡௔௟൯

xT௢௥௜௚௜௡௔௟
 

 
Where TAx is the TAx metric, xT௢௥௜௚௜௡௔௟  is the goal probability in the next 5 actions using the original xT 
model and xT௦௣௔௧௜௔௟ is the goal probability in the next 5 actions using the spatial xT model. The TAx 
metric is essentially the percentage increase or reduction in attacking threat. Therefore, a negative TAx 
value suggests that the observed spatial structure is favourable to the defending side compared to what 
might be expected on average at the same pitch location, and vice versa for positive values. We can use 
this metric to perform numerous evaluations of teams in the English Premier League, as shown in the 
upcoming sections. Assessing the contribution of the attack and the defence to the TAx metric is an 
interesting research task as both are interconnected with both attackers and defenders positioning 
themselves based on the opposition. During our evaluations, we examine TAx over many samples to 
identify trends for a team’s defence and attack. 
 
7.2 Team head-to-heads 
Now that we have introduced the TAx metric, we can evaluate team performances to see how well they 
limit threat when defending and increase threat when attacking. In particular, we will calculate the 
mean TAx for the defensive attacking team in head-to-heads between each team. It is important to note 
that the TAx metric measures how player positioning has contributed to an added or reduced threat in 
comparison to the original Expected Threat model. Therefore, a team may have a higher mean spatial 
xT than another team, but a lower mean TAx value. In this case, the team is more susceptible to 
dangerous attacks, but their defensive positioning and the location of the opposition’s attackers have 
led to less dangerous attacking space and passing options for the opposition on average. As the TAx 
value is calculated from the spatial xT model using spatial features, it is used as a metric to evaluate the 
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effect of player positioning, independent of player skill. This evaluation uses StatsBomb’s 360 data from 
the 2021-22 season. 
 
Figure 9 presents a matrix of head-to-heads, showing a team’s attack and defence on the x-axis and y-
axis respectively, with matrix values indicating the mean TAx in each head-to-head. A mean column is 
also given, to show the mean TAx of a team’s attack and defence over all head-to-heads. 
 

 
Figure 9 – Mean TAx Values for head-to-heads over the 2021/22 English Premier League season. 

 
This highlights interesting insights into which teams can maintain the best defensive unit against 
particular opponents, and would be useful as a pre-match analytical tool to identify which team setup 
limited attacking threat most against a particular opposition, and traits of that system could therefore 
be practised in training. This also could be used as an attacking tool, by identifying which teams struggle 
to position defensively against different attacking styles. 
 
For example, Tottenham Hotspur are an interesting case study, as they seem to struggle defensively 
against the teams nearer the top of the table, suggesting they may find difficulty in defending against 
sustained build-ups. Whereas they have lower TAx values for lower table teams, suggesting that they 
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position well defensively against counterattacks. It is also clear that most teams struggle to maintain 
strong defensive units against Tottenham Hotspur as their mean TAx when attacking is highest. Teams 
may therefore use this model to study particular examples of poor defending and identify trends where 
Tottenham Hotspur are causing defensive vulnerabilities. This is likely due to their counter-attacking 
style, meaning that they were finding many situations with open spaces to attack. It may also be due to 
the impact of their attacking fullbacks creating overloads. Southampton also present as another team 
who struggle most defensively against teams at the top of the table. This may suggest that they are well 
prepared for counterattacks but struggle with player overloads. 
 
Overall, the teams with the lowest mean TAx value in defence are Leeds and Manchester City. Leeds 
stand out here as their mean spatial xT is the highest of all teams but they have the lowest TAx value. 
This may be due to their high-intensity style presenting high interception likelihood in the spatial xT 
model, however, as the spatial xT only considers player positions myopically, space left when the press 
is bypassed cannot be accounted for. Southampton and Manchester United have the highest mean TAx 
values when defending, suggesting that they struggle to work as a defensive unit. Manchester United 
stand out as an interesting example here, and the statistics support this, showing that they conceded 
the 13th most goals in the league despite finishing 6th in the table. 
 
7.3 Lowest TAx Examples 
To demonstrate the model in action, we generate some heatmaps of transition probabilities to see how 
the transition probabilities in the 𝑇∗ model compared to the original transition model 𝑇, giving further 
insight into the calculation of the TAx values. In these examples, the heatmaps detail the increase and 
decrease in transition probability for each zone in 𝑇∗ compared to 𝑇. Therefore, if the red team is on the 
ball, and an area is shaded red, this is suggesting that the spatial transition model, 𝑇∗, model predicts 
the ball is more likely to go to this region than average. These heatmaps are interpolated for easier 
viewing. We will first present some examples of good defensive structure and limited attacking threat 
based on the best TAx values in the dataset, shown in Figure 10. 
 

 
TAx: -78.5% 

 

 
TAx: -75.9% 
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TAx: -70.6% 

 
TAx: -67.1% 

Figure 10 – Examples of lowest TAx values e.g. lower attacking threat than average. Interpolated heatmaps 
showing more likely transition probabilities given spatial context, with heatmap colours matching team colour. 

As shown in these examples, the ball carrier is generally well marked, and most attacking options are 
being blocked by defenders. This suggests that it is difficult for the attacking team to progress the ball 
into a more dangerous position without losing the ball, and the defence is well set up to limit the threat 
of moving the ball. Therefore, we see low TAx values. 
 
7.4 Highest TAx Examples 
Examples are now shown for situations where TAx is much higher, suggesting that the attacking threat is 
higher than usual due to the location of attackers and defenders. These are shown in Figure 11. 
 

 
TAx: 320.2% 

 
TAx: 256.8% 

 

 
TAx: 238.5% 

 
TAx: 219.1% 

Figure 11 – Examples of highest TAx values e.g. higher attacking threat than average. Interpolated heatmaps 
showing more likely transition probabilities given spatial context, with heatmap colours matching team colour. 
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These heatmaps introduce an interesting aspect of the model. In situations where the ball carrier is far 
wide and it is clear that the ball is about to be crossed, the model has a high TAx value. This is likely 
because the model expects that the ball will reach a dangerous area in the next action, and if won by the 
attacking team, pose a high goal threat, particularly in comparison to the average wide-play.  
 
7.5 Defensive Optimiser 
We introduce here a proof-of-concept to identify the optimal defensive setup to minimise xT for a given 
situation. For now, we demonstrate examples of this approach, and we look to refine this algorithm and 
perform further defensive evaluations using this algorithm in future work. We approach this task by 
using a basin-hopping global optimiser with a sequential least squares programming algorithm where 
the spatial xT is looking to be minimised using the set of defender locations as a decision variable where 
each defender could be located within 5 metres of their actual location and the bounds of the pitch. This 
aims to find reachable optimal defensive positioning given where they were actually positioned during 
the event. A couple of examples can be seen below in Figure 12. Similarly to the TAx figures, these 
heatmaps visualise the increase and decrease in transition probability for 𝑇∗ compared to the original 
transition model 𝑇 to give an idea of most likely transitions in comparison to the average transitions 
from that current state. 
 

Original Defensive Positions Optimised Defensive Positions 

 
TAx: 12.2% 

 
TAx: -7.2% 

 

 
TAx: 1.4% 

 
TAx: -2.9% 

 
Figure 12 – Examples of the defensive optimiser, showing the actual player locations and an example with optimal 

defensive positioning computed from the optimiser.  
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As shown, this can be used to find defensive setups which reduce the attacking threat of situations given 
attacker locations. This could be used by teams and analysts to learn improved defensive structure and 
identify areas of the pitch that can be improved most. In particular, this could aid in post-match analysis 
to identify when the defence could have improved and how. Whilst this optimiser is a good initial step, 
improvements are needed to help find global optima, as due to long running times and discrete pitch 
zones, it is difficult to reach global optima and instead finds local optima due to the irregular 
optimization landscape, a product in part of the relatively coarse pitch grid. This leads to results that 
sometimes can be hard to interpret. However, a fully functional optimiser is a key area of future work 
which could be used to evaluate defences in rigorous detail. 
 

8. Conclusion 
In this paper, we proposed a novel modification of the Expected Threat model which considers player 
positioning in football. Our model utilises StatsBomb 360 data to consider a contextual approach to 
move transition probabilities within the Expected Threat architecture, with the use of a convolutional 
neural network model. Using these transition probabilities, we compute a modified Expected Threat 
value and validate our model by comparing its predictive accuracy to original Expected Threat. We also 
propose a new “Threat Above Expected” (TAx) metric for computing the success of attacking and 
defensive player positioning and compare positional effectiveness of 10 teams in the 2021/22 English 
Premier League season. Finally, we show how our model can be applied to perform a deeper analysis of 
team structures and used as an analytical tool in opposition analysis, with the inclusion of a defensive 
optimiser to find optimal defensive positioning. In future work, we look to add a contextual shot model 
to our modified Expected Threat. Furthermore, we aim to improve and streamline the defensive 
optimiser to evaluate teams and optimal defending over a large sample of games. 
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